
1 Partial dependence

Let F : Rp → R denote the prediction function that maps the p-dimensional
feature vector x = (x1, . . . , xp) to its prediction. Furthermore, let Fs(xs) =
Ex\s(F (xs,x\s)) be the partial dependence function of F on the feature subset
xs, where s ⊆ {1, . . . , p}, as introduced in [1]. Here, the expectation runs over
the joint marginal distribution of features x\s not in xs.

Given data, Fs(xs) can be estimated by the empirical partial dependence
function

F̂s(xs) =
1

n

n∑
i=1

F (xs,xi\s),

where xi\s, i = 1, . . . , n, are the observed values of x\s. Its disaggregated version
is called individual conditional expectation (ICE), see [2].

2 Interaction statistics

2.1 Overall interaction strength

In [3], Friedman and Popescu introduced different statistics to measure inter-
action strength. Closely following their notation, we will summarize the main
ideas.

If there are no interactions involving xj , we can decompose the prediction
function F into the sum of the partial dependence Fj on xj and the partial
dependence F\j on all other features x\j , i.e.,

F (x) = Fj(xj) + F\j(x\j).

Correspondingly, Friedman and Popescu’s statistic of overall interaction strength
is given by

H2
j =

1
n

∑n
i=1

[
F (xi) − F̂j(xij) − F̂\j(xi\j)

]2
1
n

∑n
i=1

[
F (xi)

]2 .

Remarks

1. Partial dependence functions (and F ) are all centered to mean 0.

2. Partial dependence functions (and F ) are evaluated over the data distri-
bution. This is different to partial dependence plots, where one uses a
fixed grid.

3. Weighted versions follow by replacing all arithmetic means by correspond-
ing weighted means.

4. Multivariate predictions can be treated in a component-wise manner.

5. Due to (typically undesired) extrapolation effects of partial dependence
functions, depending on the model, values above 1 may occur.
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6. H2
j = 0 means there are no interactions associated with xj . The higher

the value, the more prediction variability comes from interactions with xj .

7. Since the denominator is the same for all features, the values of the test
statistics can be compared across features.

2.2 Pairwise interaction strength

Again following [3], if there are no interaction effects between features xj and
xk, their two-dimensional partial dependence function Fjk can be written as the
sum of the univariate partial dependencies, i.e.,

Fjk(xj , xk) = Fj(xj) + Fk(xk).

Correspondingly, Friedman and Popescu’s statistic of pairwise interaction strength
is defined as

H2
jk =

Ajk

1
n

∑n
i=1

[
F̂jk(xij , xik)

]2
where

Ajk =
1

n

n∑
i=1

[
F̂jk(xij , xik) − F̂j(xij) − F̂k(xik)

]2
.

Remarks

1. Remarks 1–5 of H2
j also apply here.

2. H2
jk = 0 means there are no interaction effects between xj and xk. The

larger the value, the more of the joint effect of the two features comes from
the interaction.

3. Since the denominator differs between variable pairs, unlike Hj , this test
statistic is difficult to compare between variable pairs. If both main effects
are very weak, a negligible interaction can get a high H2

jk. Therefore, [3]

suggests to calculate H2
jk only for important variables.

Modification: To be better able to compare pairwise interaction strength
across variable pairs, and to overcome the problem mentioned in the last remark,
we suggest as alternative the unnormalized test statistic on the scale of the
predictions, i.e.,

√
Ajk. Furthermore, we do pairwise calculations not for the

most important features but rather for those features with strongest overall
interactions.
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2.3 Three-way interactions

[3] also describes a test statistic to measure three-way interactions: in case
there are no three-way interactions between features xj , xk and xl, their three-
dimensional partial dependence function Fjkl can be decomposed into lower
order terms:

Fjkl(xj , xk, xl) = Bjkl − Cjkl

with
Bjkl = Fjk(xj , xk) + Fjl(xj , xl) + Fkl(xk, xl)

and
Cjkl = Fj(xj) + Fk(xk) + Fl(xl).

The squared and scaled difference between the two sides of the equation leads
to the statistic

H2
jkl =

1
n

∑n
i=1

[
F̂jkl(xij , xik, xil) −B

(i)
jkl + C

(i)
jkl

]2
1
n

∑n
i=1 F̂jkl(xij , xik, xil)2

,

where
B

(i)
jkl = F̂jk(xij , xik) + F̂jl(xij , xil) + F̂kl(xik, xil)

and
C

(i)
jkl = F̂j(xij) + F̂k(xik) + F̂l(xil).

Similar remarks as for H2
jk apply.

2.4 Total interaction strength of all variables together

If the model is additive in all features (no interactions), then

F (x) =

p∑
j

Fj(xj),

i.e., the (centered) predictions can be written as the sum of the (centered) main
effects. To measure the relative amount of variability unexplained by all main
effects, we can therefore study the test statistic of total interaction strength

H2 =
1
n

∑n
i=1

[
F (xi) −

∑p
j=1 F̂j(xij)

]2
1
n

∑n
i=1

[
F (xi)

]2 .

A value of 0 means there are no interaction effects at all. Due to (typically
undesired) extrapolation effects of partial dependence functions, depending on
the model, values above 1 may occur.

In [4], 1−H2 is called additivity index. A similar measure using accumulated
local effects is discussed in [5].
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2.5 Workflow

Calculation of all H2
j requires O(n2p) predictions, while calculating of all pair-

wise Hjk requires O(n2p2) predictions. Therefore, we suggest to reduce the
workflow in two important ways:

� Evaluate the statistics only on a subset of the data, e.g., on n′ = 300
observations.

� Calculate H2
j for all features. Then, select a small number m = O(

√
p) of

features with highest H2
j and do pairwise calculations only on this subset.

This leads to a total number of O(n′2p)) predictions. If also three-way interac-
tions are to be studied, m should be of the order p1/3.

3 Variable importance

[6] proposed the standard deviation of the partial dependence function as a
measure of variable importance.

Since the partial dependence function suppresses interaction effects, we pro-
pose a different measure in the spirit of the interaction statistics above: If xj

has no effects, the (centered) prediction function F equals the (centered) partial
dependence F\j on all other features x\j , i.e.,

F (x) = F\j(x\j).

Therefore, the following measure of variable importance follows:

Impj =
1
n

∑n
i=1

[
F (xi) − F̂\j(xi\j)

]2
1
n

∑n
i=1

[
F (xi)

]2 .

It differs from H2
j only by not subtracting the main effect of the j-th feature

in the numerator. It can be read as the proportion of prediction variability
unexplained by all other features. As such, it measures variable importance of
the j-th feature, including its interaction effects.

4 Limitation

1. H-statistics are based on partial dependence estimates and are thus as
good or bad as these. One of their problems is that the model is applied
to unseen/impossible feature combinations. In extreme cases, H-statistics
intended to be in the range between 0 and 1 can become larger than 1.
Accumulated local effects (ALE) [7] mend above problem of partial de-
pendence estimates. They, however, depend on the notion of “closeness”,
which is highly non-trivial in higher dimension and for discrete features.
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2. Due to their computational complexity, H-statistics are usually evaluated
on relatively small subsets of the training (or validation/test) data. Con-
sequently, the estimates are typically not very robust. To get more robust
results, increase the sample size.
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