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Introduction
Satterthwaite’s method for degrees of freedom has many applications with the Welch-Satterthwaite two-sample
t-test allowing for different variances as the most well-known example. Confidence intervals for linear functions
of mean squares is another example as is t and F -tests for contrasts of the mean-value parameters or so-called
fixed-effects in linear mixed models which is the topic of this note.

In applications of linear mixed models to balanced datasets it is often possible to derive known integer
denominator degrees of freedom for t-statistics for individual parameters (or one-dimensional contrasts) and
F -statistics for model terms (or multi-dimensional contrasts). These statistics are convenient since they
follow exact t and F -distributions thus exempting the need for asymptotic Wald or likelihood ratio tests
whose small-sample behavior is dubious and often anti-conservative – even for rather large samples. [We
can think of the Wald test as an F -test with infinite denominator df so in experiments which are balanced
except for one or a few missing observations the denominator df from the corresponding balanced experiment
provides an upper bound for the denominator df with the unbalanced dataset. The likelihood ratio test can be
viewed as a small adjustment to the Wald test but otherwise with the same caveats.] But balance is a fragile
aspect which is easily lost due to a missing observation even in well-designed experiments. In such cases it
is concerning and inconvenient having to resort to the asymptotic tests when intuitively we would expect
an approximate F -test to be much more accurate. Essentially, Satterthwaite’s method produces such an
approximate t or F -test and if in fact an exact F -test exists this is produced. Simulations [1, 2] have shown
these approximate F -tests to be an important improvement over the asymptotic tests in many situations.

In this note we describe the development of Satterthwaite’s method [3] for estimation of denominator degrees
of freedom in t and F -test for contrasts of mean-value parameters in linear mixed models. It is worth noting
that the Welch-Satterthwaite two-sample t-test is in fact a special case of the more general case presented
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here. We also exemplify how the actual computations can be done using the implementation of linear mixed
models in the lme4 package [4] for R.

In the remainder of this section we briefly introduce a class of multivariate normal models and the class of
linear mixed models. We also briefly introduce the t-test for one-dimensional contrasts of the mean-value
parameters.

In the next section we describe the development of Satterthwaite’s method for estimation of denominator
degrees of freedom in t-tests of one-dimensional contrasts. After describing how we address the computational
challenges involved we present an example where t-tests of the mean-value parameters are evaluated in an
unbalanced dataset.

The following section extends the application of Satterthwaite’s method for denominator degrees of freedom
from one-dimensional contrasts leading to t-tests on one numerator degree of freedom to multi-dimensional
contrasts leading to F -tests on multiple numerator degrees of freedom. Also here is an example given on an
unbalanced dataset.

The multivariate normal and linear mixed models
Satterthwaite’s method for denominator degrees of freedom as presented here is not only applicable to linear
mixed models, but also to the more general class of multivariate normal models of which linear mixed models
are a special case. The multivariate normal model can be written

Y = Xβ + ε

with ε ∼ N(0, Vτ ), X being a n× p design matrix, Vτ being the variance-covariance matrix of the residuals
ε (as well as of the observations Y ), and τ is the (usually small) k-vector of unique variance-covariance
parameters. The p-vector of mean-value parameters β can be profiled out of the likelihood function since the
estimate β̂τ given a value for τ can be expressed by the generalized least squares (GLS) estimator as the
solution to

X>V −1
τ Xβ̂ = X>V −1

τ y

where y is the observed value of Y . The asymptotic variance-covariance matrix of β̂ is

Vτ (β̂) =
(
X>V −1

τ X
)−1

which is a function of τ (only) and denoted Vτ̂ (β̂) when evaluated at the (ML or REML) estimate τ̂ . Note
that the distribution of Y and therefore the likelihood function for the model, only depends on the, usually
small, parameter vector, τ .

The linear mixed model may be written
Y = Xβ + Zb+ ε

with random-effects b ∼ N(0, Gτ ) and residuals ε ∼ N(0, Rτ ). Noting that E(Y ) = Xβ and V(Y ) ≡ Vτ =
ZGτZ

> +Rτ we essentially have the multivariate normal model with some structure imposed on Vτ with the
same GLS estimator of β and its asymptotic variance-covariance matrix.

Tests of vector contrasts
In this context we are interested in assessing a hypothesis concerning a linear function of the mean-value or
fixed-effect parameters:

H0 : L>β = 0

where L> is a known contrast vector, we will consider the t-statistic

t = L>β̂√
L>Vτ̂ (β̂)L
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This statistic will in general not follow an exact t-distribution, but we may choose the degrees of freedom, ν, so
that it follows approximately a t-distribution. The next section describes a method known as Satterthwaite’s
method for choosing or approximating ν.

Satterthwaite’s method for t-statistics
The method of finding ν attributed to Satterthwaite (1946) [3] begins by matching the t-statistic above with
a variable following an exact t-distribution, so we begin with the definition of the Student’s t-distribution
(see for example this wiki page):

The random variable
tν = Z√

V/ν

is tν-distributed with ν degrees of freedom if Z ∼ N(0, 1), V ∼ χ2
ν and Z and V are independent.

Considering the t-variable above, we divide both numerator and denominator with the (true, but unknown)
variance of L>β̂:

t = L>β̂√
L>Vτ̂ (β̂)L

=
L>β̂/

√
L>Vτ (β̂)L√

L>Vτ̂ (β̂)L
/√

L>Vτ (β̂)L
=

L>β̂/

√
L>Vτ (β̂)L√

L>Vτ̂ (β̂)L/L>Vτ (β̂)L

Now assuming that L>β̂ is normally distributed with expectation E[L>β̂] = 0 and (true, unknown) variance
V[L>β̂] = L>Vτ (β̂)L leads to

L>β̂/

√
L>Vτ (β̂)L ∼ N(0, 1)

under the null hypothesis. Matching the t-variable with the definition of the t-distribution leads us to assume
that

ν(L>Vτ̂ (β̂)L)
L>Vτ (β̂)L

∼ χ2
ν

is approximately χ2-distributed with ν degrees of freedom. Note that this statistic has the familiar form
νS2/σ2 which is χ2

ν-distributed if (ν + 1) independent normally distributed random variables has variance σ2

and sum-of-squares S2.

Denoting S2 = L>Vτ̂ (β̂)L and σ2 = L>Vτ (β̂)L we have that (approximately)

S2 ∼ σ2

ν
χ2
ν

with expectation

E(S2) = E
(
σ2

ν
χ2
ν

)
= σ2

ν
E(χ2

ν) = σ2

ν
ν = σ2

and variance

V(S2) =
(
σ2

ν

)2

V(χ2
ν) =

(
σ2

ν

)2

2ν = 2(σ2)2

ν

The expectation doesn’t bring anything new to the table, but isolating ν the expression for the variance leads
to the following estimator for ν (depending on the data through τ):

ν̂(τ) = 2(σ2)2

V(S2) = 2(L>Vτ (β̂)L)2

V(L>Vτ̂ (β̂)L)

We may obtain the estimate ν̂(τ̂) (a value, for ν̂(τ)) by evaluating at τ = τ̂ . This is straight forward for the
numerator, but we don’t directly have the denominator so we need an extra step here.
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Noting that L>Vτ (β̂)L ≡ f(τ) is a function of τ and using the delta method we may approximate the variance
of f(τ) at τ = τ̂ by

V(f(τ̂)) ≈ f ′(τ̂)>V(τ̂)f ′(τ̂)

where f ′(τ̂) = f ′(τ)|τ=τ̂ is the vector of derivatives of f(τ) wrt. τ evaluated at τ̂ and V(τ̂) is the asymptotic
variance-covariance matrix of the τ -vector evaluated at τ̂ (which can be obtained (numerically) as the inverse
Hessian of the negative log-likelihood function).

Finally, we may evaluate the estimator of ν at τ̂ to obtain

ν̂(τ̂) = 2(L>Vτ̂ (β̂)L)2

f ′(τ̂)>V(τ̂)f ′(τ̂) = 2f(τ̂)2

f ′(τ̂)>V(τ̂)f ′(τ̂)

Instead of directly evaluating the gradient of f(τ̂) = L>Vτ̂ (β̂)L we write the gradient as

f ′(τ̂) = L>{∇τVτ (β̂)}L
∣∣
τ=τ̂

Here the Jacobian J ≡ ∇τVτ (β̂) is the 3-dimensional array with k faces of size p × p. Left and right
multiplying each face by L> and L respectively (where L is p× 1) leads to the k-vector f ′(τ̂).

This has the advantage that the gradient is not tied to a particular L and J may be re-used for other contrast
matrices, and, as we shall see later, can also be used for multi-degree of freedom F -tests.

Computational approach
The computational challenge is essentially to evaluate the denominator in the expression for ν̂(τ̂), which
amounts to computing the gradient f ′(τ̂) and variance-covariance matrix of the variance parameter vector
V(τ̂). We will now address these challenges in turn starting with the latter.

The variance-covariance matrix of the variance parameter vector V(τ̂) can be computed as the inverse of
Hessian of the negative log-likelihood function with respect to the variance-parameters. Conveniently the
lme4 package provides a simple way to extract a deviance function from a linear mixed model fit. The
deviance is a scaled version of the log-likelihood function for the model so numerically computing the Hessian
of the deviance function provides an estimate of the covariance matrix of the variance parameters. One
minor challenge is that the residual variance, σ is profiled out of the deviance function as implemented in
lme4, so the deviance function cannot be used directly as it comes. A variant of the deviance function has to
be written that operates on the variance parameters, τ . Using the hessian function from the numDeriv
package [5] conveniently and accurately evaluates the Hessian numerically.

The variance-covariance matrix of β can also be expressed as a function of the variance parameters using the
same deviance function. Using the jacobian function from numDeriv allows us to numerically evaluate J
at τ̂ . Having computed V(τ̂) and J its only a matter of putting the different quantities together to compute
the estimate of the denominator degrees of freedom.

Example: Computing denominator df for a t-test using lme4::lmer

In this example we will consider the ham dataset from the lmerTest package [1] in which 81 consumers
evaluated 4 products twice leading to 648 observations. The dataset is balanced, but we randomly select and
use 580 observations (corresponding to approximately 90%) making the dataset unbalanced. An initial fit of
the data using lmer from the lme4 package reads:
library(lme4)
## Loading required package: Matrix
data(ham, package="lmerTest")
set.seed(12345)
model <- lmer(Informed.liking ~ Product + (1|Consumer),

data = ham[sample(x=1:nrow(ham), size=580, replace=FALSE), ])
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summary(model, corr=FALSE)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Informed.liking ~ Product + (1 | Consumer)
## Data: ham[sample(x = 1:nrow(ham), size = 580, replace = FALSE), ]
##
## REML criterion at convergence: 2560.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4794 -0.6766 0.1447 0.7477 2.4066
##
## Random effects:
## Groups Name Variance Std.Dev.
## Consumer (Intercept) 0.7408 0.8607
## Residual 4.3152 2.0773
## Number of obs: 580, groups: Consumer, 81
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 5.84346 0.19790 29.528
## Product2 -0.66197 0.24431 -2.709
## Product3 0.20102 0.24476 0.821
## Product4 0.08105 0.24656 0.329

Suppose now that we are interested in the contrast
L <- c(0, 1, 0, 0)

which simply picks out the second coefficient; the estimate of the difference between product 2 and product 1.

The estimate of this contrast L>β is then computed with:
(estimate <- drop(t(L) %*% fixef(model)))
## [1] -0.6619655

Computing the variance-covariance matrix of the variance parameters

In this model the variance-covariance parameters are collected in the 2-vector τ = [σc, σ]; the square root of
the random-effect variance for consumers and the residual standard deviation. lmer however, profiles out
the residual standard deviation of the (restricted) profile likelihood and operates with vector θ of relative
variance parameters. In this model θ = σc/σ.

The parameters that characterize the model can be summarized as
(parlist <- list(beta=fixef(model),

theta=getME(model, "theta"),
sigma=sigma(model)))

## $beta
## (Intercept) Product2 Product3 Product4
## 5.84345560 -0.66196549 0.20102196 0.08105489
##
## $theta
## Consumer.(Intercept)
## 0.4143353
##
## $sigma
## [1] 2.077314
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and the consumer random effect standard deviation can be retrieved with
with(parlist, theta*sigma)
## Consumer.(Intercept)
## 0.8607045

A function that directly evaluates the model deviance (REML or ML criterion) can be obtained directly from
the model fit:
devfun <- update(model, devFunOnly=TRUE)

Being a function of θ, we can calculate the deviance at θ̂ with
devfun(parlist$theta)
## [1] 2563.524

To compute the variance-covariance matrix of τ by numerically evaluating the Hessian of the log-likelihood
function, we need to re-implement the deviance function as a function of the unique variance-covariance
parameters (τ) – not only the relative variance parameters (θ). Utilizing the deviance function as a function
of θ and some particulars of the implementation of linear mixed models in lmer as described in [4] we can
implement this as:
devfun_varpar <- function(varpar, devfun, reml) {

# Computes deviance as a function of 'varpar=c(theta, sigma)'
# devfun: deviance function as a function of theta only.
# reml: TRUE if REML; FALSE if ML
nvarpar <- length(varpar)
sigma2 <- varpar[nvarpar]^2
theta <- varpar[-nvarpar]
df_envir <- environment(devfun)
devfun(theta) # Evaluate deviance function at varpar
n <- nrow(df_envir$pp$V)
# Compute deviance for ML:
dev <- df_envir$pp$ldL2() + (df_envir$resp$wrss() + df_envir$pp$sqrL(1))/sigma2 +

n * log(2 * pi * sigma2)
if(!reml) return(dev)
# Adjust of REML is used:
RX <- df_envir$pp$RX() # X'V^{-1}X ~ crossprod(RX^{-1}) = cov(beta)^{-1} / sigma^2
dev + 2*c(determinant(RX)$modulus) - ncol(RX) * log(2 * pi * sigma2)

}

This function returns the same deviance but as a function of a different parameter vector:
is_reml <- getME(model, "is_REML")
varpar_opt <- unname(c(parlist$theta, parlist$sigma))
devfun_varpar(varpar_opt, devfun, reml=is_reml)
## [1] 2563.532

We can now obtain the hessian for τ of the deviance function with the numerical approximation provided in
the numDeriv package:
library(numDeriv)
h <- hessian(func=devfun_varpar, x=varpar_opt, devfun=devfun, reml=is_reml)

Before inverting h, we check that it is positive definite by confirming that all its eigenvalues are positive:
eig_h <- eigen(h, symmetric=TRUE)
eig_h$values
## [1] 795.7477 353.1973
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stopifnot(all(eig_h$values > 0))

Inverting and scaling h provides the asymptotic variance-covariance matrix of the variance parameters at
their estimate V(τ̂):
h_inv <- with(eig_h, vectors %*% diag(1/values) %*% t(vectors))
(cov_varpar <- 2 * h_inv)
## [,1] [,2]
## [1,] 0.003828133 -0.001553014
## [2,] -0.001553014 0.004347785

Computing the gradient of f(τ̂)

To compute f ′(τ̂) = L>{∇τVτ (β̂)}L
∣∣
τ=τ̂ we first implement Vτ (β̂) as a function of τ :

get_covbeta <- function(varpar, devfun) {
# Compute cov(beta) as a function of varpar
#
# varpar: c(theta, sigma)
# devfun: deviance function, ie. update(model, devFunOnly=TRUE) - a function of theta
# return: cov(beta) given specified varpar
#
nvarpar <- length(varpar)
sigma <- varpar[nvarpar] # residual std.dev.
theta <- varpar[-nvarpar] # ranef var-par
devfun(theta) # evaluate REML or ML deviance 'criterion'
df_envir <- environment(devfun) # extract model environment
sigma^2 * tcrossprod(df_envir$pp$RXi()) # vcov(beta)

}

Then evaluate the gradient (Jacobian), J = ∇θVθ(β̂) numerically using the jacobian function from the
numDeriv package and organize it as a list (of length k) of p× p matrices:
Jac <- jacobian(func=get_covbeta, x=varpar_opt, devfun=devfun)
Jac_list <- lapply(1:ncol(Jac), function(i)

array(Jac[, i], dim=rep(length(parlist$beta), 2))) # k-list of jacobian matrices

Left and right multiplying each matrix by L> and L respectively gives the gradient vector (of length k):
(grad_var_Lbeta <- vapply(Jac_list, function(x)

sum(L * x %*% L), numeric(1L))) # = {L' Jac L}_i
## [1] 0.0008652581 0.0580662870

Putting it all together

We now have all elements for the denominator of ν̂(τ̂). The only element in the numerator, the estimated
covariance matrix of the contrast L>β is then simply V(L>β̂) = L>Vτ̂ (β̂)L is simple to evaluate since
vcov(model) extracts Vτ̂ (β̂):
cov_beta <- as.matrix(vcov(model))
# Compute vcov(Lbeta)
(var_Lbeta <- drop(t(L) %*% cov_beta %*% L))
## [1] 0.05968911
# Alternative: (var_con <- get_covbeta(varpar_opt, devfun))

Collecting all elements gives the following coefficient table:
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se.estimate <- sqrt(var_Lbeta)
satt_denom <- sum(grad_var_Lbeta * (cov_varpar %*% grad_var_Lbeta)) # g'Ag
ddf <- drop(2 * var_Lbeta^2 / satt_denom) # denominator DF
tstat <- estimate/se.estimate
pvalue <- 2 * pt(abs(tstat), df = ddf, lower.tail = FALSE)
data.frame(estimate, se=se.estimate, tstat, ddf, pvalue)
## estimate se tstat ddf pvalue
## 1 -0.6619655 0.2443135 -2.709492 491.2089 0.006974127

Satterthwaite’s method for multi-df F -tests
Often it is of interest to assess an hypothesis on more than one linear function of the parameters such as

H0 : Lβ = 0

were the q × p matrix L has rank q with 1 < q ≤ p and p is the length of the β-vector.

The conventional F -statistic for this hypothesis reads

F = 1
q

(Lβ̂)>(LVτ̂ (β̂)L>)−1(Lβ̂)

which is seen to reduce to the square of the t-statistic considered above for q = 1. Despite its name, this
statistic only follows an exact F -distribution with q numerator degrees of freedom and known denominator
degrees of freedom in special cases (such as orthogonal or balanced designs.)

In the general case we are interested in estimating an appropriate denominator degrees of freedom for F
assuming q numerator degrees of freedom.

Following Fai and Cornelius (1996) [6] we eigen-decompose the variance-covariance matrix of Lβ̂:

Vτ̂ (Lβ̂) = LVτ̂ (β̂)L> = PDP>

such that we may write
qF ≡ Q = (Lβ̂)>PD−1P>(Lβ̂)

= β̂>L>PD−1P>Lβ̂

= (P>Lβ̂)>D−1(P>Lβ̂)

=
q∑

m=1

(P>Lβ̂)2
m

dm
=

q∑
m=1

t2m

where (P>Lβ̂)m denotes the m’th element of the q-vector P>Lβ̂ (P> is an orthonormal q × q rotation
matrix), and dm is the m’th diagonal element of D; the diagonal matrix of eigenvalues.

Thus Q is being rewritten as a sum of q independent variables that have the form of the square of t-statistics
each on one “numerator-degree of freedom”.

In equivalence with (and multidimensional extension of) the 1D case above let

f(τ̂) ≡ P>LVτ̂ (β̂)L>P = L̃Vτ̂ (β̂)L̃> = D, with L̃ = P>L

be the diagonal matrix of eigenvalues (of Vτ̂ (Lβ̂)) and let f(τ̂)m = dm denote the m’th eigenvalue.

Note also that the mth diagonal element of f(τ̂) can be written

f(τ̂)m = (L̃Vτ̂ (β̂)L̃)m = L̃mVτ̂ (β̂)L̃m
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The m’th t-statistic in the summation above can now be written as

tm = L̃mβ̂√
L̃mVτ̂ (β̂)L̃m

which clarifies the similarity with the t-statistic considered in the 1-degree of freedom case above.

We therefore proceed as in the 1D case to estimate the degrees of freedom νm for the q tm-statistics with

ν̂m(τ̂) = 2f(τ̂)2
m

f ′(τ̂)>mV(τ̂)f ′(τ̂)m
= 2d2

m

f ′(τ̂)>mV(τ̂)f ′(τ̂)m

in which the gradient vector of length k reads

f ′(τ̂)m = L̃>m{∇τVτ (β̂)|τ=τ̂}L̃m

as discussed in the 1D case above.

Having determined estimates of νm for m = 1, . . . , q, the objective is now to determine the denominator
degrees of freedom for the F -statistic above. Since an F -variable with q numerator and ν denominator degrees
of freedom has expectation

E(Fq,ν) = ν

ν − 2 for ν > 2

and we may for our F -statistics evaluate this quantity via

E(Fq,ν) = E(q−1Q) = q−1E(Q)

we may consider as estimator for ν the solution to

q−1E(Q) = ν

ν − 2 for ν > 2

which leads to
ν̂ = 2E(Q)

E(Q)− q
Note that we need to require that E(Q) > q since only then is ν̂ positive.

The only remaining step is to determine E(Q) where again we utilize the expectation of an F -variable with at
least two denominator degrees of freedom:

E(Q) =
q∑

m=1
E(t2νm

) =
q∑

m=1
E(F1,νm

) =
q∑

m=1

νm
νm − 2 for νm > 2

Example: Computing denominator df for an F -test using lme4::lmer

Considering the example above, we start by defining the contrast matrix, L and form the contrast estimate
Lβ̂:
L <- rbind(c(0, 1, 0, 0),

c(0, 0, 1, 0))
(Lbeta <- drop(L %*% parlist$beta))
## [1] -0.6619655 0.2010220

and compute the variance of the contrasts Vτ̂ (Lβ̂) = LVτ̂ (β̂)L>:
cov_Lbeta <- L %*% cov_beta %*% t(L) # Var(contrast) = Var(Lbeta)

We then compute the eigen-decomposition V(Lβ̂) = P>DP and extract the rank, eigenvectors and eigenvalues:
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# Get eigen decomposition of vcov(Lbeta):
eig_VLbeta <- eigen(cov_Lbeta)
positive <- eig_VLbeta$values > 1e-8
q <- sum(positive) # rank(VLbeta)
(P <- eig_VLbeta$vectors)
## [,1] [,2]
## [1,] 0.7058316 -0.7083797
## [2,] 0.7083797 0.7058316
(d <- eig_VLbeta$values)
## [1] 0.08984076 0.02975399

The new contrast vectors are then L̃ = P>L

PtL <- crossprod(P, L) # q x p matrix

from which we can compute the t2 values and F -statistic:
t2 <- drop(PtL %*% parlist$beta)^2 / d
Fvalue <- sum(t2) / q

For the new contrast vectors L̃m = (P>L)m for m = 1, . . . , q we compute the gradient f ′(τ̂)m:
grad_PLcov <- lapply(1:q, function(m) {

vapply(Jac_list, function(J) sum(PtL[m, ] * J %*% PtL[m, ]), numeric(1L))
})

The m’th denominator degree of freedom estimate is then ν̂m = 2d2
m(f ′(τ̂)>mAf ′(τ̂)>m)−1:

nu_m <- vapply(1:2, function(m) {
denom <- sum(grad_PLcov[[m]] * (cov_varpar %*% grad_PLcov[[m]])) # g'Ag
2*(d[m])^2 / denom # 2d_m^2 / g'Ag

}, numeric(1L))
nu_m
## [1] 501.4952 494.6459

From E(Q) we then evaluate the estimated denominator degrees of freedom for the F -statistic:
EQ <- sum(nu_m / (nu_m - 2))
(ddf <- 2 * EQ / (EQ - q)) # nu
## [1] 498.0469

In summary we have the following approximate F -test:
pvalue <- pf(q=Fvalue, df1=q, df2=ddf, lower.tail=FALSE)
data.frame('F value'=Fvalue, ndf=q, ddf=ddf, 'p-value'=pvalue,

check.names = FALSE)
## F value ndf ddf p-value
## 1 6.856825 2 498.0469 0.00115446

Remarks
Remark 1: If L is rank deficient

If the contrast matrix L is row-rank deficient with < q rows where q is the rank of L, then all that it is
needed is to define L̃ as the first q rows of P>L. Notice that we can find q as the number of non-zero (save a
tolerance) eigenvalues in D.

Remark 2: Sum of Squares and Mean Squares
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The sums of squares (SSQ) associated with a contrast L can be written

SSQ(Lβ̂) = Fqσ̂2

with mean square (MS)
MS(Lβ̂) = SSQ(Lβ̂)/q = Fσ̂2

These SSQ and MS do not correspond to those that can be derived for variance-component models but refer
directly to the multivariate normal model.

Remark 3: q = 1

For q = 1 the F -value can be computed as the square of the t-statistics with its estimate of the denominator
degrees of freedom without evaluation of E(Q).

Remark 4: q ≥ 2

For q ≥ 2 we need E(Q) > q, but note that

E(Q) =
q∑

m=1

νm
νm − 2 > q

if νm > 2 for all m, since
νm

νm − 2 > 1 for νm > 2

Thus the requirement reduces to νm > 2 for m = 1, . . . , q.

Remark 5: ν tends to 2

If, for some m, say m′ νm′ → 2+ (νm′ approaches 2 from above), then

ν̂ = 2E(Q)
E(Q)− q → 2

since
νm′

νm′ − 2 →∞

and therefore
E(Q)→∞

Remark 6: lower bound on ν

A property of the F -distribution is that if

X ∼ Fq,ν then X−1 ∼ Fν,q

Thus we may consider 2 as a lower bound on ν (recall that q ≥ 2) which may be used if any νm < 2.

Remark 7: all q estimates νm are the same

If all q estimates νm are the same and ν1 = . . . = νq we have that

E(Q) = q
νm

νm − 2

and therefore

ν = 2E(Q)
E(Q)− q =

q 2νm

νm−2

q νm−νm+2
νm−2

= 2νm
νm − 2

νm − 2
2 = νm

thus the estimate of the degrees of freedom ν for the F -statistic is just ν = ν1 = . . . = νq.
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