
 @jennybc

 @JennyBryan
Jennifer Bryan

Creating reproducible
examples with reprex

2018 September
rstd.io/reprex

https://github.com/jennybc
https://twitter.com/JennyBryan
https://rstd.io/reprex

rstd.io/reprex
https://reprex.tidyverse.org

https://rstd.io/reprex
https://reprex.tidyverse.org

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit  
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

rstd.io/reprex

basic usage

1. Copy code.

2. Run reprex().

3. Admire, locally.

4. Paste into target.

5. Wait for help.

reprex (noun)
 a reproducible example

reprex
 an R package available on CRAN

reprex::reprex()
 an R function in reprex to make a reprex

Include a reprex when you ...

1. Seek R help on community.rstudio.com
2. Ask an [r] question on stackoverflow.com
3. Report a bug in an R package on github.com
4. Talk about R stuff in Slack or in email

reprex::reprex() makes this easier!

https://community.rstudio.com
https://stackoverflow.com
https://github.com

rstd.io/reprex

installation
& setup

install JUST reprex
install.packages("reprex")

install reprex,
as part of the tidyverse
install.packages("tidyverse")

Pick one, do once per machine

library(reprex)

Do once per R session

put this in ~/.Rprofile to make reprex
available 24/7
if (interactive()) {
 suppressMessages(require(reprex))
}

one way to create or open your .Rprofile
install.packages("usethis")
usethis::edit_r_profile()

Or ... do this once per machine

You are now ready to use reprex::reprex()

call in the R Console use RStudio addin

reprex is a workflow package

you use it interactively
not in scripts, Rmd's, packages, Shiny apps

therefore, it is safe to attach via .Rprofile

do not do this with dplyr, ggplot2, etc.

rstd.io/reprex

What drove
me to this?

stat545.com

I participated in
300 - 500 R-heavy

GitHub issue threads
in Sept-Nov each year

😩

http://stat545.com
http://www.apple.com

Now, I work with R a lot on GitHub and in Slack (not shown)

rstd.io/reprex

reprex
philosophy

conversations about code are more productive with:

code that actually runs

code that I don’t have to run

code that I can easily run

code that actually runs

code is run in new R session

ergo, it must be self-contained!

must load all necessary packages
must create all necessary objects

not self-contained — forgot to attach necessary package

not self-contained — forgot to define template object

YAAAASSSSSS

template <- "${EXCLAMATION} - your reprex is ${adjective}!"
praise(template)
#> Error in praise(template): could not find function "praise"

library(praise)
praise(template)
#> Error in grepl(template_pattern, x): object 'template' not found

library(praise)
template <- "${EXCLAMATION} - your reprex is ${adjective}!"
praise(template)
#> [1] "WOWIE - your reprex is astounding!"

https://reprex.tidyverse.org/articles/reprex-dos-and-donts.html

• Use the smallest, simplest, most built-in
data possible.

• Include commands on a strict "need to
run" basis.

• Pack it in, pack it out, and don’t take
liberties with other people’s computers.

standard tricks for the inline
creation of a small data frame

x <- read.csv(text = "a,b\n1,2\n3,4")
x
#> a b
#> 1 1 2
#> 2 3 4

x <- data.frame(
 a = c(1, 2),
 b = c(3, 4)
)
x
#> a b
#> 1 1 3
#> 2 2 4

library(readr)
x <- read_csv("a,b\n1,2\n3,4")
x
#> # A tibble: 2 x 2
#> a b
#> <dbl> <dbl>
#> 1 1 2
#> 2 3 4

library(tibble)
x <- tribble(
 ~a, ~b,
 1, 2,
 3, 4
)
x
#> # A tibble: 2 x 2
#> a b
#> <dbl> <dbl>
#> 1 1 2
#> 2 3 4

x <- tibble(
 a = c(1, 2),
 b = c(3, 4)
)
x
#> # A tibble: 2 x 2
#> a b
#> <dbl> <dbl>
#> 1 1 3
#> 2 2 4

what if you already have an object and you want
the tribble() call to define it?
library(datapasta)
x <- tribble_construct(head(iris))
#> Warning in tribble_construct(head(iris)): Column(s) 5 have been converted
#> from factor to character in tribble output.
cat(x)
#> tibble::tribble(
#> ~Sepal.Length, ~Sepal.Width, ~Petal.Length, ~Petal.Width, ~Species,
#> 5.1, 3.5, 1.4, 0.2, "setosa",
#> 4.9, 3, 1.4, 0.2, "setosa",
#> 4.7, 3.2, 1.3, 0.2, "setosa",
#> 4.6, 3.1, 1.5, 0.2, "setosa",
#> 5, 3.6, 1.4, 0.2, "setosa",
#> 5.4, 3.9, 1.7, 0.4, "setosa"
#>)

code that I don’t have to run

many readers have lots of experience

they can often get the point w/o running code,
especially if they can see the output

reveal the output produced by your code

Maintainer can label this 🐞 and fellow users
can 👍 this because reprex shows the output.

https://github.com/tidyverse/readr/issues/784

https://github.com/hadley/purrr/issues/110

code that I can easily run
do not copy/paste from the R console

do not take a screenshot of your R session

> test1 <- "\"Header\nLine Two\"\nValue"
> cat(test1)
"Header
Line Two"
Value
> readr::read_csv(test1)
A tibble: 2 x 1
 `Header\nLine Two`
 <chr>
1 "Line Two\""
2 Value

😡

Do not copy/paste from the R console.
Others must make fiddly edits to reproduce.

😭

Do not take a screenshot.
Others must retype everything to reproduce.

😊

A proper reprex can be re-run via copy/paste.

test1 <- "\"Header\nLine Two\"\nValue"
cat(test1)
#> "Header
#> Line Two"
#> Value
readr::read_csv(test1)
#> # A tibble: 2 x 1
#> `Header\nLine Two`
#> <chr>
#> 1 "Line Two\""
#> 2 Value

🤓

See also reprex_invert() and reprex_rescue().

test1 <- "\"Header\nLine Two\"\nValue"
cat(test1)
readr::read_csv(test1)

Or, if you really want really clean code ...
Copy from GitHub → reprex_clean() → Paste.

rstd.io/reprex

Shock and Awe
😲

live demo of ...

automatic imgur.com upload of figs
input as expression
take control of where output goes
venues: gh, so, r, rtf
ad, session info, comment
capture std out and err

http://imgur.com

figures are uploaded to imgur.com and linked, by default
library(gapminder)
library(ggplot2)

ggplot(subset(gapminder, continent != "Oceania"),
 aes(x = year, y = lifeExp, group = country, color = country)) +
 geom_line(lwd = 1, show.legend = FALSE) + facet_wrap(~ continent) +
 scale_color_manual(values = country_colors) +
 theme_bw() + theme(strip.text = element_text(size = rel(1.1)))

copy the above ^^ to clipboard
reprex()
paste into, e.g., GitHub issue
OMG the figure is there! w00t!

demo: figure upload to imgur.com

demo: reprex from an expression
see also: the input argument

provide input as an expression
reprex({
 x <- rnorm(100)
 y <- rnorm(100)
 cor(x, y)
})

demo: outfile argument to control where things go
ask to work in working directory
(vs session temp directory)
helpful if reprex does file I/O
reprex(
 writeLines(letters[1:6]),
 outfile = NA
)

provide a humane base for the filename
reprex(
 writeLines(letters[21:26]),
 outfile = "shock-and-awe"
)

demo: venue argument (default is "gh" for GitHub)
render to markdown tuned to Stack Overflow (vs
GitHub or Discourse)
reprex(
 mean(rnorm(100)),
 venue = "so"
)

render to a commented R script
great for email or Slack
reprex(
 mean(rnorm(100)),
 venue = "r"
)

render to RTF to paste into Keynote or PowerPoint
reprex(
 mean(rnorm(100)),
 venue = "rtf"
)

demo: advertise, si, style arguments
suppress the "advertisement" (toggle it!)
reprex(
 mean(rnorm(100)),
 advertise = TRUE
)

include session info (toggle it!)
reprex(
 mean(rnorm(100)),
 si = TRUE
)

re-style the code (toggle it!)
reprex(
 input = c(
 'if (TRUE) "true branch" else {',
 '"else branch"',
 ' }'
),
 style = TRUE
)

demo: std_out_err argument

include output from standard output and standard error
remove.packages("bench")
reprex(
 devtools::install_github("r-lib/bench"),
 std_out_err = TRUE
)

Customize your defaults in .Rprofile

options(
 reprex.advertise = FALSE,
 reprex.si = TRUE,
 reprex.style = TRUE,
 reprex.comment = "#;-)",
 reprex.tidyverse_quiet = FALSE
)

Two RStudio addins

Render reprex... launches
a gadget, i.e. a GUI

Reprex selection is
conceived for use with a
keyboard shortcut

I bind Reprex selection to Shift + Cmd + R.
Hadley binds to Alt + Cmd + R.

Tools > Modify Keyboard Shortcuts...

rstd.io/reprex

the
human

side

ht
tp

s:
//

un
sp

la
sh

.c
om

/p
ho

to
s/

xd
Ee

Ly
K4

iB
o

⚠ WARNING ⚠
Tough love!
Hyperbole!
Real talk!

With all the love in the world 😏 ...

if your theory about what's wrong was so great?

we probably wouldn't be having this conversation.

Show us the code.

Have you ever helped a relative with their
computer problem over the phone?

That's how it feels to answer a programming
question based on a prose narrative.

Show us the code.

Assume everyone is acting in good faith.

(If not, they are irrelevant.)

True story: experts are afraid to offer a solution if
they can't prove to themselves that it works.

Show us the code.

"Making a good reprex is a lot of work!"

Yes, it is!

You're asking others to experience your pain.

This is how you meet them halfway.

Let's get selfish.

Making good reprexes?

Reproducing other people's problems?
Eventually ... solving them?

This is a great way to get better at programming.

Let's stay selfish.

Pleasant surprise: making a good reprex often
leads to solving your own problem. In private.

reprex() helps you organize your attack. It
forces you to strip your problem down to basics.

rstd.io/reprex

what
actually
happens

{{{yaml}}}

{{{so_syntax_highlighting}}}

#+ reprex-setup, include = FALSE
options(tidyverse.quiet = {{{tidyverse_quiet}}})
knitr::opts_chunk$set(collapse = TRUE, comment = "{{{comment}}}", error = TRUE)
knitr::opts_knit$set(upload.fun = {{{upload_fun}}})

#+ reprex-body
{{{body}}}

{{{std_file_stub}}}

{{{ad}}}

{{{si}}}

your code goes here
then .R → .md → .html

?.R .rtf?
→

(y <- 1:4)
mean(y)

``` r 
(y <- 1:4) 
#> [1] 1 2 3 4 
...

reprex()

bit o' code

html preview in RStudio gfm on  as seen on GitHub



(y <- 1:4) 
mean(y)

<!-- language-all: lang-r --> 

    (y <- 1:4) 
    #> [1] 1 2 3 4 
  ...

reprex(venue = "so")

bit o' code

html preview in RStudio SO md on  as seen on StackOverflow



(y <- 1:4) 
mean(y)

(y <- 1:4) 
#> [1] 1 2 3 4 
mean(y) 
#> [1] 2.5 
...

reprex(venue = "r")

bit o' code

html preview in RStudio commented R on  as Slack R snippet



Huge 🙏 to Yihui Xie and all those who bring us 
rmarkdown and Pandoc 

reprex is "just" a wrapper around those things 😏 

All reprex co-authors, contributors, users



rstd.io/reprex

engage in Q & A 
report bugs 
request features 
be a chatty R nerd!


