
Roots of Functions of One Variable in R

John C. Nash
Telfer School of Management

University of Ottawa
Ottawa, Canada

October 2011

Abstract

This vignette is intended to show how problems that devolve into finding
the root(s) of a function of one variable may arise and how R may solve
them. We will mention polynomial root-finding, but generally regard this
(and eigenvalues of matrices) to be somewhat different problems from those
that will be the focus here.

We also wish to point out the limitations of computational technology
for root-finding. Treating root-finders as black boxes is, in the author’s view,
dangerous in that it risks many possibilities for poor approximations to the
answers we desire, or even drastically wrong answers. Largely this is because
users may make assumptions about the problem and/or the software that
are not justified. Indeed, in this vignette we mostly seek only real-valued
solutions to equations.

Finally we want to show that the built-in tool for one-dimensional root-
finding in R (uniroot), while a very good choice, is still based on several
design considerations that may not be a good fit to particular user problems.

1 Equations in one variable

There are many mathematical problems stated as equations. If we have one
equation and only one variable in the equation is ”unknown”, that is, not
yet determined, then we should be able to solve the equation. In order to
do this, we shall specify that the unknown variable is x and rewrite the
equation as

f(x) = 0

1

Of course, there may be more than one value of x that causes f(x) to
be zero. This multiplicity of solutions is one of the principal difficulties for
rootfinding software. Roots might also have complex values, and it is quite
reasonable that users (and software) may consider that only real roots are
admissible and wanted.

2 Some examples

In this section, we look at some examples which illustrate some particular
issues that are relevant to rootfinding software and its usage.

2.1 An extra foot

This is a problem from [1] .

SPMA terrorists find a 1 mile section of welded rail that is pinned
at each end. In one of the two rails (Stephenson gauge), they
weld an extra foot of rail. If that rail bows away from its partner
in a regular circular arc, how far apart are the rails at the widest
point?

The problem can be drawn as follows:

2

Our goal is to compute A + G. If we presume Standard (Stephenson)
gauge, then G = 4 feet 8.5 inches. (Acton has given us Imperial measure-
ments to complicate the task). Thus G = 4 + 17/24 feet. The distance d is
0.5 * 5280 = 2640 feet, and the arc above it is 0.5 * 5281 = 2640.5 feet. If
the angle p is in radians, we then get the two equations for the radius r of
the circular arc and the angle p

r ∗ p = 2640.5
and
r ∗ sin(p) = 2640
There we are: 2 equations in 2 unknowns. ”Piece of cake”comes to mind.

Hold on! These are not so easy to solve.
First, we could solve them both at once by defining a sum of squares

function of the residuals
e1 = r ∗ p− 2640.5
e2 = r ∗ sin(p) − 2640

as sumsq(r, p) = e12 + e22

R provides a reasonable way to do this with the optim() function and its
Nelder-Mead default method. We simply need some sort of starting values
and our sumsq() function. As a start, let us assume that the radius r will
be at least a few miles. Try 20000 feet. And the angle p should be at least
some fraction of a radian, so let us try 0.5. (These are quite poor estimates;
we can do much better just using Pythagorus’ theorem.)

> rm(list=ls())

> railss<-function(xx){ # SPMA rail problem to provide sumsquares of residuals

+ r<-xx[1]

+ p<-xx[2] # get the two parameters

+ e1<-r*sin(p)-2640

+ e2<-r*p-2640.5

+ ss<-e1*e1+e2*e2

+ }

> x<-c(10000, 0.5) # start

> cat("Function at start = ",railss(x),"\n")

Function at start = 10208057

> ans<-optim(x, railss)

> print(ans)

$par

[1] 1.290627e+04 2.051969e-01

3

$value

[1] 165.6857

$counts

function gradient

207 NA

$convergence

[1] 0

$message

NULL

> rr<-ans$par[1]

> pp<-ans$par[2]

> GG<-4 + 8.5/12

> AA<- rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 270.7622 + G = 275.4706

This ”answer” is not, however, very good. Note that the value of the
function at the finish – a sum of squares that should be zero – is 165. This
is a result of a very large initial function, of the order of 1E+7, which scales
the convergence tolerances. However, we can restart from the finish point
of the ”first try”.

> xx<-ans$par # new start

> ans2<-optim(xx, railss)

> print(ans2)

$par

[1] 2.398158e+04 1.101986e-01

$value

[1] 11.80843

$counts

function gradient

501 NA

4

$convergence

[1] 1

$message

NULL

> rr<-ans2$par[1]

> pp<-ans2$par[2]

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 145.4657 + G = 150.1741

This time we have exceeded the function evaluation limit of 500. We can
fix this easily if we don’t mind making our computer work a bit.

> xx<-ans$par # new start

> ans2<-optim(xx, railss, control=list(maxit=20000))

> print(ans2)

$par

[1] 4.936003e+04 5.350205e-02

$value

[1] 0.2891659

$counts

function gradient

1837 NA

$convergence

[1] 0

$message

NULL

> rr<-ans2$par[1]

> pp<-ans2$par[2]

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

5

rail distance = 70.62894 + G = 75.33727

Better, but the sum of squares is still not zero. We could try a different
optimizer.

> xx<-ans$par # new start

> ans3<-optim(xx, railss, method='BFGS', control=list(maxit=20000))

> print(ans3)

$par

[1] 1.834871e+04 1.441402e-01

$value

[1] 37.40262

$counts

function gradient

72002 20000

$convergence

[1] 1

$message

NULL

> rr<-ans3$par[1]

> pp<-ans3$par[2]

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 190.2803 + G = 194.9887

None of these answers are very good. Indeed, let us abandon for the
moment the ”circular arc” and simply use a triangular approximation as in
the figure below.

6

Then the Pythagorean rule gives us
A = sqrt(2640.52 − 26402)
or approximately 51.38 feet.
Using Pythagorus again, we find
(r −A)2 + 26402 = r2

or
2 ∗ r ∗A = 26402 + A2

giving, r approximately 67845.3 feet. In turn, this gives p as
p = 2640.5/r
or 0.03892 radians, about 2.23 degrees.
Starting our optimization from r = 70000 and p = .04 gives.

> xy<-c(70000, .04) # new start

> ans4<-optim(xy, railss, control=list(maxit=20000))

> print(ans4)

$par

[1] 7.268903e+04 3.632673e-02

$value

[1] 0.003682029

$counts

function gradient

7

85 NA

$convergence

[1] 0

$message

NULL

> rr<-ans4$par[1]

> pp<-ans4$par[2]

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 47.95609 + G = 52.66442

> cat("\n Try from last solution")

Try from last solution

> ans5<-optim(c(rr, pp), railss, control=list(maxit=20000))

> print(ans5)

$par

[1] 7.833505e+04 3.370777e-02

$value

[1] 1.796436e-13

$counts

function gradient

1127 NA

$convergence

[1] 0

$message

NULL

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 47.95609 + G = 52.66442

8

The last answer is actually quite good. And we know that it is a good
answer because the sum of squares is very small. This is the value element
of the optimization answer.

Our second solution is to substitute r = 2640.5/p from the first of our
equations into the second, giving

2640.5 ∗ sin(p)/p− 2640 = g(p) = 0
We seek roots of g(p), and R offers us uniroot(), which requires us to

provide an interval estimate for the location of a root. Moreover, g(p) should
have opposite signs at each end of the interval. Let us choose p in [0.01, 0.1].
That this is a good choice is shown by the graph of the function.

0.01 0.02 0.03 0.04 0.05

−2
e−

04
−1

e−
04

0e
+0

0
1e

−0
4

px

ra
il1

p(
px

)

> tint<-c(0.01, 0.1) # interval for root

> g<-function(p) {

+ fun<-2640.5 * sin(p)/p - 2640

+ }

> tryp<- uniroot(g, tint)

> print(tryp)

$root

[1] 0.0337213

$f.root

[1] -0.0004018539

9

$iter

[1] 7

$init.it

[1] NA

$estim.prec

[1] 6.103516e-05

> pp<-tryp$root

> rr <- 2640.5/pp

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 44.51633 + G = 49.22466

> e1<-rr*sin(pp)-2640

> e2<-rr*pp-2640.5

> ss<-e1*e1+e2*e2

> cat("ss loss function = ", ss, "\n")

ss loss function = 1.614865e-07

>

This is ”not too bad”.
Our third approach solves using r, that is,
r ∗ sin(2640.5/r) − 2640 = f(r) = 0
We choose a fairly wide interval in which to search for a root.

10

6e+04 7e+04 8e+04 9e+04 1e+05

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

rx

ra
il1

r(r
x)

> tinr<-c(50000, 90000) # interval for root

> f<-function(r) {

+ fun<-r * sin(2640.5/r) - 2640

+ }

> tryr<- uniroot(f, tinr)

> print(tryr)

$root

[1] 78335.08

$f.root

[1] 0

$iter

[1] 7

$init.it

[1] NA

$estim.prec

[1] 33.47549

> rr<-tryr$root

> pp <- 2640.5/rr

11

> AA<-rr*(1-cos(pp))

> cat("rail distance = ",AA," + G =",AA+GG,"\n")

rail distance = 44.49846 + G = 49.20679

> e1<-rr*sin(pp)-2640

> e2<-rr*pp-2640.5

> ss<-e1*e1+e2*e2

> cat("ss loss function = ", ss, "\n")

ss loss function = 0

>

We are not going to get a better sum of squares than 0.

2.2 Not there!

An issue to which we will return later concerns the possibility that we have a
function f(x) that becomes singular at some point x. A nice example is the
tangent of an angle. For convenience, let us measure the angle in degrees,
so for R we modify the internal function so the argument is appropriately
scaled by 180/pi (see the code chunk). Now if we consider this function
from 80 to 100 degrees, we get a curve approaching +Infinity from below
and -Infinity from above (i.e., larger angles). There is no root at 90 degrees.
However, ...

> cat("Tangent function false root\n")

Tangent function false root

> mytan<-function(xdeg){ # tangent in degrees

+ xrad<-xdeg*pi/180.0 # conversion to radians

+ tt<-tan(xrad)

+ }

> cat("find root between 80 and 100 degrees\n")

find root between 80 and 100 degrees

> tint<-c(80,100)

> rtan1<-uniroot(mytan, tint)

> print(rtan1)

12

$root

[1] 90.00008

$f.root

[1] -750991.8

$iter

[1] 19

$init.it

[1] NA

$estim.prec

[1] 7.629348e-05

> cat("\n\nTighten the tolerance\n")

Tighten the tolerance

> rtan2<-uniroot(mytan, tint, tol=.Machine$double.eps)

> print(rtan2)

$root

[1] 90

$f.root

[1] -7.867602e+14

$iter

[1] 49

$init.it

[1] NA

$estim.prec

[1] 7.105427e-14

This is unfortunate. It is a reminder to check our solutions, which in
this case is easily done with a graph. Also we might consider the large size
of the function at the root to be a hint of trouble, but this is not necessarily
a conclusive indicator. Later we will consider some ways we might make our
rootfinders provide some warnings.

13

2.3 A normal concern

The tangent is an obvious case where the function values are going ”away”
from zero as we approach the root, so we might think that such behaviour
could be used as an indicator of trouble. However, it is possible to have func-
tions that look somewhat like the tangent but still actually have roots. In
fact, we may find other difficulties as well. Consider the Gaussian (normal)
density function

f(x) = 1
sqrt(2∗pi∗sigma2)

exp(−0.5 ∗ ((x−mu)/sigma)2)

This is the usual ”bell shaped” curve. It is always positive, so not a
function for which we want to find roots. However, its derivative with respect
to x has the right properties. This can be found using R with the D()

function. The function we want to use is
g(x) = −1

sqrt(2∗pi∗sigma2))
∗ (x−mu)

sigma2
exp(−(x−mu)2/(2 ∗ sigma2)

Let us set mu = 4 and draw the function from 0 to 8 for sigma = 1
(in red) and sigma = 0.1. To keep the graph viewable, we graph the log
of the magnitudes, but keep the sign. As the standard deviation sigma gets
smaller, the function gets steeper.

0 2 4 6 8

−6
−4

−2
0

2
4

6

x

lo
gd

er
 (x

)

14

Let us use 2 and 6 as the limits of our search interval and find the root
for sigma progressively smaller.

> cat("Gaussian derivative\n")

Gaussian derivative

> der<-function(x,mu,sigma){

+ dd<-(-1)*(1/sqrt(2 * pi * sigma^2)) * (exp(-(x - mu)^2/(2 * sigma^2)) *

+ ((x - mu)/(sigma^2)))

+ }

> r1<-uniroot(der, lower=2, upper=6, mu=4, sigma=1)

> r.1<-uniroot(der, lower=2, upper=6, mu=4, sigma=.1)

> r.01<-uniroot(der, lower=2, upper=6, mu=4, sigma=.01)

> r.001<-uniroot(der, lower=2, upper=6, mu=4, sigma=.001)

> sig<-c(1, .1, .01, .001)

> roo<-c(r1$root, r.1$root, r.01$root, r.001$root)

> tabl<-data.frame(sig, roo)

> print(tabl)

sig roo

1 1.000 4

2 0.100 4

3 0.010 2

4 0.001 2

What is going on here?! We know the root should be at 4, but in the
final two cases it is at 2. The reason turns out to be that the function value
at x = 2 is computationally zero – a root. The danger is that we just don’t
recognize that this is not the ”root” we likely wish to find, for example, if
we are using the derivative as a way to sharpen the finding of a peak on a
spectrometer.

2.4 Little Polly Nomial

Polynomial roots are a common problem that should generally be solved by
methods different from those of interest here. We are really only looking at
methods to find a single real root of a real scalar function of one variable.
This is easily illustrated by an example. Suppose we want the roots of the
polynomial

z(x) = 10 − 3 ∗ x + x3

15

This has the set of coefficients that we would establish using the R code
z <- c(10, -3, 0, 1)

The package polynom solves this easily using polyroot(z).

> z <- c(10, -3, 0, 1)

> simpol<-function(x){ # calculate polynomial z at x

+ zz <- c(10, -3, 0, 1)

+ ndeg<-length(zz)-1 # degree of polynomial

+ val<-zz[ndeg+1]

+ for (i in 1:ndeg){

+ val<-val*x+zz[ndeg+1-i]

+ }

+ val

+ }

> tint<-c(-5,5)

> cat("roots of polynomial specified by ")

roots of polynomial specified by

> print(z)

[1] 10 -3 0 1

> require(polynom)

> allroots<-polyroot(z)

> print(allroots)

[1] 1.306444+1.456155i -2.612888+0.000000i 1.306444-1.456155i

> cat("single root from uniroot on interval ",tint[1],",",tint[2],"\n")

single root from uniroot on interval -5 , 5

> rt1<-uniroot(simpol, tint)

> print(rt1)

$root

[1] -2.612888

$f.root

[1] 2.532119e-06

16

$iter

[1] 9

$init.it

[1] NA

$estim.prec

[1] 6.103516e-05

Here we see that uniroot does a perfectly good job of finding the real root
of this cubic polynomial. It will not, however, solve the simple polynomial

y(x) = (x− 4)2

because the roots are both at 4 and the function never crosses the y axis.
uniroot insists on having a starting interval where the function has opposite
sign at the ends of the interval. Uniroot should (and in our example below
does) work when there is a root with odd multiplicity, so that there is a
crossing of the axis.

> z <- c(16, -8, 1)

> simpol2<-function(x){ # calculate polynomial z at x

+ val <- (x-4)^2

+ }

> tint<-c(-5,5)

> cat("roots of polynomial specified by ")

roots of polynomial specified by

> print(z)

[1] 16 -8 1

> library(polynom)

> allroots<-polyroot(z)

> print(allroots)

[1] 4+0i 4-0i

> cat("single root from uniroot on interval ",tint[1],",",tint[2],"\n")

single root from uniroot on interval -5 , 5

17

> rt1<-try(uniroot(simpol2, tint))

> print(rt1)

[1] "Error in uniroot(simpol2, tint) : \n f() values at end points not of opposite sign\n"

attr(,"class")

[1] "try-error"

attr(,"condition")

<simpleError in uniroot(simpol2, tint): f() values at end points not of opposite sign>

> cat("\n Try a cubic\n")

Try a cubic

> cub<-function(z) {val<-(z-4)^3}

> cc<-c(-64, 48, -12, 1)

> croot<-polyroot(cc)

> croot

[1] 4-0i 4+0i 4+0i

> ans<-uniroot(cub, lower=2, upper=6)

> ans

$root

[1] 4

$f.root

[1] 0

$iter

[1] 1

$init.it

[1] NA

$estim.prec

[1] 2

2.5 A hyptothequial question

In Canada, mortgages fall under the Canada Interest Act. This has an
interesting clause:

18

6. Whenever any principal money or interest secured by mort-
gage of real estate is, by the mortgage, made payable on the
sinking fund plan, or on any plan under which the payments of
principal money and interest are blended, or on any plan that
involves an allowance of interest on stipulated repayments, no
interest whatever shall be chargeable, payable or recoverable,
on any part of the principal money advanced, unless the mort-
gage contains a statement showing the amount of such principal
money and the rate of interest thereon, calculated yearly or half-
yearly, not in advance.

This clause allowed the author to charge rather a high fee to re-calculate
the payment schedule for a private lender who had, in a period when the
annual rate of interest was around 20% in the early 1980s, used a U.S.
computer program. The borrower wanted to make monthly payments. This
is feasible in Canada, but we must do the calculations with a rate that is
equivalent to the half-yearly rate. So if the annual rate is R%, the semi-
annual rate is R/2%, and we want compounding at a monthly rate that is
equal to this semi-annual rate. That is,

(1 + I/100)6 = (1 + R/2)
and our root-finding problem is the solution of
A(I) = (1 + I/100)6 − (1 + R/200) = 0
We can actually write down a solution, of course, as
I = 100 ∗ ((1 + R/200)(1/6) − 1)
A textbook (and possibly dangerous) approach to this has been to plug

this formula into a spreadsheet or other system (including R). The difficulty
is that approximations to the fractional (1/6) power are just that, approx-
imations. And the answer for low interest rates are bound to give digit
cancellation when we subtract 1 from the (1/6) root of a number not very
different from 1. However, R does, in fact, a good job. Using uniroot on
the function A(I) above is also acceptable if the tolerance is specified and
small, otherwise we get a rather poor answer.

A quite good way to solve this problem is by means of the Binomial
Theorem, where the expansion of (1 + h)(1/6) (substituting h for R/200) is
(1 + h)(1/6) = 1 + (1/6) ∗ h + (1/6)((1/6) − 1) ∗ h2/2! +

(1/6)((1/6) − 1)((1/6) − 2) ∗ h3/3! + ...
Besides converging very rapidly, this series expansion begins with 1,

which we can subtract analytically, thereby avoiding digit cancellation. The
following calculations present the ideas in program form.

19

> mrate<-function(R){

+ val<-0

+ den<-1

+ fact<-1/6

+ term<-1

+ rr<-R/200

+ repeat { # main loop

+ term<-term*fact*rr/den

+ vallast<-val

+ val<-val+term

+ # cat("term =",term," val now ",val,"\n")

+ if (val == vallast) break

+ fact<-(fact - 1)

+ den<-den+1

+ if (den > 1000) stop("Too many terms in mrate")

+ }

+ val*100

+ }

> A<-function(I,Rval){

+ A<-(1+I/100)^6-(1+R/200)

+ }

> for (r2 in 0:24){

+ R<-r2/2 # rate per year

+ i.formula<-100*((1+R/200)^(1/6)-1)

+ i.root<-uniroot(A,c(0,20),tol=.Machine$double.eps,Rval=R)$root

+ i.mrate<-mrate(R)

+ cat(R," ",i.mrate," Diffs:",

+ i.formula-i.mrate," ",i.root-i.mrate,"\n")

+ }

0 0 Diffs: 0 0

0.5 0.04162333 Diffs: -3.157197e-15 7.813195e-15

1 0.08316025 Diffs: 4.732326e-15 -6.314393e-15

1.5 0.1246112 Diffs: -5.162537e-15 5.703771e-15

2 0.1659764 Diffs: 5.551115e-16 3.330669e-16

2.5 0.2072565 Diffs: 9.992007e-16 2.692291e-15

3 0.2484517 Diffs: 5.162537e-15 -5.828671e-15

3.5 0.2895624 Diffs: 1.665335e-16 -2.109424e-15

4 0.330589 Diffs: 3.719247e-15 -7.21645e-15

4.5 0.371532 Diffs: -6.827872e-15 4.107825e-15

20

5 0.4123915 Diffs: -3.719247e-15 7.105427e-15

5.5 0.4531682 Diffs: 7.660539e-15 -3.219647e-15

6 0.4938622 Diffs: -9.547918e-15 1.165734e-15

6.5 0.534474 Diffs: 5.551115e-15 -5.329071e-15

7 0.5750039 Diffs: -1.332268e-15 -5.884182e-15

7.5 0.6154524 Diffs: -5.329071e-15 5.329071e-15

8 0.6558197 Diffs: 6.883383e-15 -3.996803e-15

8.5 0.6961062 Diffs: -8.548717e-15 2.220446e-15

9 0.7363123 Diffs: 1.110223e-15 -9.547918e-15

9.5 0.7764383 Diffs: -5.107026e-15 5.329071e-15

10 0.8164846 Diffs: -4.996004e-15 5.995204e-15

10.5 0.8564515 Diffs: 8.65974e-15 -2.331468e-15

11 0.8963394 Diffs: -4.32987e-15 6.77236e-15

11.5 0.9361486 Diffs: -3.996803e-15 6.994405e-15

12 0.9758794 Diffs: 9.547918e-15 -1.110223e-15

2.6 Exponentially speaking

The exponential function exp(−alpha ∗ x) descends to an asypmtote at 0
with a rate dependent on the positive parameter alpha. Thus the function

efn(x) = exp(−alpha ∗ x) − 0.2
has a root at
x = −log(0.2)/alpha
For small alpha the root will be large, as the function will be very “flat”

as it crosses zero. For alpha small, the function will be very rapidly changing
as it crosses the y axis near x = 0.

> cat("exponential example\n")

exponential example

> require("rootoned")

> alpha<-1.0

> efn<-function(x) { exp(-alpha*x) - 0.2 }

> zfn<-function(x) { x*0 }

> tint<-c(0,100)

> curve(efn, from=tint[1], to=tint[2])

> curve(zfn, add=TRUE, col='red')
> rform<- -log(0.2)/alpha

> resr<-root1d(efn,tint,tol=1e-10)

> cat("alpha = ",alpha,"\n")

21

alpha = 1

> cat("root(formula)=",rform," root1d:",resr$root," tol=",resr$rtol," fval=",

+ resr$froot," in ",resr$fcount,"\n\n")

root(formula)= 1.609438 root1d: 1.609438 tol= 9.094947e-11 fval= 8.776591e-13 in 42

> alpha=0.02

> curve(efn, add=TRUE, col='blue')
> resr<-root1d(efn,tint,tol=1e-10, trace=TRUE)

alg18 == root1d -- root of a function of one variable - Updated 2018 for R

f(0)= 0.8 f(100)= -0.06466472 interval= 100 start

3 evalns: f(50)= 0.1678794

width interval= 100

f(50)= 0.1678794 f(100)= -0.06466472 interval= 50 Bisect

4 evalns: f(75)= 0.02313016

width interval= 50

f(75)= 0.02313016 f(100)= -0.06466472 interval= 25 Bisect

5 evalns: f(87.5)= -0.02622606

width interval= 25

f(75)= 0.02313016 f(87.5)= -0.02622606 interval= 12.5 Bisect

6 evalns: f(81.25)= -0.003088325

width interval= 12.5

f(75)= 0.02313016 f(81.25)= -0.003088325 interval= 6.25 Bisect

7 evalns: f(78.125)= 0.009611387

width interval= 6.25

f(78.125)= 0.009611387 f(81.25)= -0.003088325 interval= 3.125 Bisect

8 evalns: f(79.6875)= 0.003162323

width interval= 3.125

f(79.6875)= 0.003162323 f(81.25)= -0.003088325 interval= 1.5625 Bisect

9 evalns: f(80.46875)= 1.258288e-05

width interval= 1.5625

f(80.46875)= 1.258288e-05 f(81.25)= -0.003088325 interval= 0.78125 Bisect

10 evalns: f(80.85938)= -0.001543927

width interval= 0.78125

f(80.46875)= 1.258288e-05 f(80.85938)= -0.001543927 interval= 0.390625 Bisect

11 evalns: f(80.66406)= -0.0007671923

width interval= 0.390625

f(80.46875)= 1.258288e-05 f(80.66406)= -0.0007671923 interval= 0.1953125 Bisect

12 evalns: f(80.56641)= -0.0003776854

22

width interval= 0.1953125

f(80.46875)= 1.258288e-05 f(80.56641)= -0.0003776854 interval= 0.09765625 Bisect

13 evalns: f(80.51758)= -0.0001826466

width interval= 0.09765625

f(80.46875)= 1.258288e-05 f(80.51758)= -0.0001826466 interval= 0.04882812 Bisect

14 evalns: f(80.49316)= -8.505567e-05

width interval= 0.04882812

f(80.46875)= 1.258288e-05 f(80.49316)= -8.505567e-05 interval= 0.02441406 Bisect

15 evalns: f(80.48096)= -3.624235e-05

width interval= 0.02441406

f(80.46875)= 1.258288e-05 f(80.48096)= -3.624235e-05 interval= 0.01220703 Bisect

16 evalns: f(80.47485)= -1.183123e-05

width interval= 0.01220703

f(80.46875)= 1.258288e-05 f(80.47485)= -1.183123e-05 interval= 0.006103516 Bisect

17 evalns: f(80.4718)= 3.754559e-07

width interval= 0.006103516

f(80.4718)= 3.754559e-07 f(80.47485)= -1.183123e-05 interval= 0.003051758 Bisect

18 evalns: f(80.47333)= -5.727978e-06

width interval= 0.003051758

f(80.4718)= 3.754559e-07 f(80.47333)= -5.727978e-06 interval= 0.001525879 Bisect

19 evalns: f(80.47256)= -2.676284e-06

width interval= 0.001525879

f(80.4718)= 3.754559e-07 f(80.47256)= -2.676284e-06 interval= 0.0007629395 Bisect

20 evalns: f(80.47218)= -1.15042e-06

width interval= 0.0007629395

f(80.4718)= 3.754559e-07 f(80.47218)= -1.15042e-06 interval= 0.0003814697 Bisect

21 evalns: f(80.47199)= -3.874835e-07

width interval= 0.0003814697

f(80.4718)= 3.754559e-07 f(80.47199)= -3.874835e-07 interval= 0.0001907349 Bisect

22 evalns: f(80.4719)= -6.014156e-09

width interval= 0.0001907349

f(80.4718)= 3.754559e-07 f(80.4719)= -6.014156e-09 interval= 9.536743e-05 Bisect

23 evalns: f(80.47185)= 1.847208e-07

width interval= 9.536743e-05

f(80.47185)= 1.847208e-07 f(80.4719)= -6.014156e-09 interval= 4.768372e-05 Bisect

24 evalns: f(80.47187)= 8.93533e-08

width interval= 4.768372e-05

f(80.47187)= 8.93533e-08 f(80.4719)= -6.014156e-09 interval= 2.384186e-05 Bisect

25 evalns: f(80.47189)= 4.166956e-08

width interval= 2.384186e-05

23

f(80.47189)= 4.166956e-08 f(80.4719)= -6.014156e-09 interval= 1.192093e-05 Bisect

26 evalns: f(80.47189)= 1.78277e-08

width interval= 1.192093e-05

f(80.47189)= 1.78277e-08 f(80.4719)= -6.014156e-09 interval= 5.960464e-06 Bisect

27 evalns: f(80.47189)= 5.906773e-09

width interval= 5.960464e-06

f(80.47189)= 5.906773e-09 f(80.4719)= -6.014156e-09 interval= 2.980232e-06 Bisect

28 evalns: f(80.4719)= -5.369202e-11

width interval= 2.980232e-06

f(80.47189)= 5.906773e-09 f(80.4719)= -5.369202e-11 interval= 1.490116e-06 Bisect

29 evalns: f(80.47189)= 2.92654e-09

width interval= 1.490116e-06

f(80.47189)= 2.92654e-09 f(80.4719)= -5.369202e-11 interval= 7.450581e-07 Bisect

30 evalns: f(80.4719)= 1.436424e-09

width interval= 7.450581e-07

f(80.4719)= 1.436424e-09 f(80.4719)= -5.369202e-11 interval= 3.72529e-07 Bisect

31 evalns: f(80.4719)= 6.91366e-10

width interval= 3.72529e-07

f(80.4719)= 6.91366e-10 f(80.4719)= -5.369202e-11 interval= 1.862645e-07 Bisect

32 evalns: f(80.4719)= 3.18837e-10

width interval= 1.862645e-07

f(80.4719)= 3.18837e-10 f(80.4719)= -5.369202e-11 interval= 9.313226e-08 Bisect

33 evalns: f(80.4719)= 1.325725e-10

width interval= 9.313226e-08

f(80.4719)= 1.325725e-10 f(80.4719)= -5.369202e-11 interval= 4.656613e-08 Bisect

34 evalns: f(80.4719)= 3.944023e-11

width interval= 4.656613e-08

f(80.4719)= 3.944023e-11 f(80.4719)= -5.369202e-11 interval= 2.328306e-08 Bisect

35 evalns: f(80.4719)= -7.125883e-12

width interval= 2.328306e-08

f(80.4719)= 3.944023e-11 f(80.4719)= -7.125883e-12 interval= 1.164153e-08 Bisect

36 evalns: f(80.4719)= 1.615716e-11

width interval= 1.164153e-08

f(80.4719)= 1.615716e-11 f(80.4719)= -7.125883e-12 interval= 5.820766e-09 Bisect

37 evalns: f(80.4719)= 4.515638e-12

width interval= 5.820766e-09

f(80.4719)= 4.515638e-12 f(80.4719)= -7.125883e-12 interval= 2.910383e-09 Bisect

38 evalns: f(80.4719)= -1.305123e-12

width interval= 2.910383e-09

f(80.4719)= 4.515638e-12 f(80.4719)= -1.305123e-12 interval= 1.455192e-09 Bisect

24

39 evalns: f(80.4719)= 1.605244e-12

width interval= 1.455192e-09

f(80.4719)= 1.605244e-12 f(80.4719)= -1.305123e-12 interval= 7.275958e-10 Bisect

40 evalns: f(80.4719)= 1.500744e-13

width interval= 7.275958e-10

f(80.4719)= 1.500744e-13 f(80.4719)= -1.305123e-12 interval= 3.637979e-10 Bisect

41 evalns: f(80.4719)= -5.77538e-13

width interval= 3.637979e-10

f(80.4719)= 1.500744e-13 f(80.4719)= -5.77538e-13 interval= 1.818989e-10 Bisect

42 evalns: f(80.4719)= -2.137457e-13

width interval= 1.818989e-10

Terminated at f(80.4719)= -2.137457e-13

Final interval width = 9.094947e-11

> rform<- -log(0.2)/alpha

> cat("alpha = ",alpha,"\n")

alpha = 0.02

> cat("root(formula)=",rform," root1d:",resr$root," tol=",resr$rtol," fval=",

+ resr$froot," in ",resr$fcount,"\n\n")

root(formula)= 80.4719 root1d: 80.4719 tol= 9.094947e-11 fval= -2.137457e-13 in 42

25

0 20 40 60 80 100

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

x

ef
n(

x)

3 Approaches to solving 1D rootfinding problems

From the above examples, it is clear that any rootfinder needs to tell the
users what it is intended to do. Unfortunately, few do make clear their
understandings of a problem. And users often do not read such information
anyway! Let us consider the main ways in which rootfinders could be called.

• We could require the user to supply an interval – a lower and upper
bound for a prospective root, and further insist that the function values
at the ends of the interval have opposite sign. This is the situation
for R ’s uniroot ([2] and root1d ([3]) from the package rootoned at
https://r-forge.r-project.org/R/?group_id=395.

• An alternative approach is to consider that we will search for a root
from a single value of the argument x of our function f(x). This is the

26

setup for a one-dimensional Newton’s method, which iterates using the
formula

xnew = x− f(x)/f ′(x)

• We may wish to specify the funtion with no starting value of the argu-
ment x. An example is the polyroot function we have already used.
As far as the author is aware, there are no general rootfinders of this
type in R , or elsewhere to his knowledge.

With R , a possible package could be developed using an expression for
the function. This would allow the symbolic differentiation operator D() to
be applied to get the derivative, though there are some limitations to this
tool. For example, it does not comprehend sum() and other fairly common
functions. I have not bothered to pursue this possibility yet.

It is also possible to consider a secant-rule version of Newton’s method.
That is, we use two points as in zeroin, root1d or uniroot, but do not
require that they have function values of opposite sign. An alternative setup
would use an initial guess to the root and a stepsize.

4 What can go wrong?

Rootfinding may seem like a fairly straightforward activity, but there are
many situations that cause trouble.

Multiple roots are common for polynomial rootfinding problems. We
already have seen cases where the polynomial is a power of a monomial (x−
root). Computationally, such problems are “easy” if we have an odd power
and are using a rootfinder for which we supply an interval that brackets the
root. We will not, however, learn the multiplicity of the root without further
work.

More troublesome are such problems when the function just touches zero,
as when the power of the monomial is even. In such case Newton’s method
can sometimes succeed, but there is a danger of numerical issues if f ′(x)
becomes very small, so that the iteration formula blows up. In fact, New-
ton’s methods generally need to be safeguarded against such computational
issues. Most of the code for a successful Newton-like method will be in the
safeguards; the basic method is trivial but prone to numerical failure.

Problems with no root at all, as in the example“Not there”above, require
some careful examination. Let us consider some example output, which has
been edited to avoid excessive space.

27

> tint<-c(80,100)

> ru<-uniroot(mytan, tint)

> ru: root= 90.00008, f.root=-750991.8, iter=19, estim.prec=7.63e-5

> rz<-zeroin(mytan, tint)

> rz: root=90, froot= -6152091027, rtol= 9.313226e-09, maxit= 30

> rr<-root1d(mytan, tint)

> rr: root= 100, froot=-5.671282, rtol= 0, count= 4

> rn<-newt1d(mytan, gmytan, aa, trace=TRUE)

1 :xold= 80 f= 5.671282 g= 0.5788112 xnew= 80

1 :xold= 80 f= 5.671282 g= 0.5788112 xnew= 70.20184

2 :xold= 70.20184 f= 2.777887 g= 0.1521344 xnew= 70.20184

2 :xold= 70.20184 f= 2.777887 g= 0.1521344 xnew= 51.94241

3 :xold= 51.94241 f= 1.277293 g= 0.04592796 xnew= 51.94241

3 :xold= 51.94241 f= 1.277293 g= 0.04592796 xnew= 24.13161

4 :xold= 24.13161 f= 0.4479839 g= 0.02095599 xnew= 24.13161

4 :xold= 24.13161 f= 0.4479839 g= 0.02095599 xnew= 2.754241

5 :xold= 2.754241 f= 0.04810763 g= 0.01749369 xnew= 2.754241

5 :xold= 2.754241 f= 0.04810763 g= 0.01749369 xnew= 0.004241002

6 :xold= 0.004241002 f= 7.401946e-05 g= 0.01745329 xnew= 0.004241002

6 :xold= 0.004241002 f= 7.401946e-05 g= 0.01745329 xnew= 1.549063e-11

7 :xold= 1.549063e-11 f= 2.703625e-13 g= 0.01745329 xnew= 1.549063e-11

7 :xold= 1.549063e-11 f= 2.703625e-13 g= 0.01745329 xnew= -3.231174e-27

8 :xold= -3.231174e-27 f= -5.639463e-29 g= 0.01745329 xnew= -3.231174e-27

8 :xold= -3.231174e-27 f= -5.639463e-29 g= 0.01745329 xnew= 0

> rn: root=0, froot=-5.639463e-29, itn= 8

Notes:

• root1d, zeroin, uniroot don’t give sufficient indication of trouble

• newt1d goes to 0 degrees (another ”root”)

5 Being a smart user of rootfinding programs

Mostly – and I am cowardly enough not to define“mostly”– users of rootfind-
ers like uniroot get satisfactory results without trouble. On the other hand,
it really is worthwhile checking these results from time to time. This is eas-
ily done with the curve function that lets one draw the function of interest.

28

Examples above show how to add a horizontal line at 0 to provide a refer-
ence and make checking the position of the root easy. Even within codes, it
is useful to generate a warning if the function value at the proposed root is
“large”, for example, of the same order of magnitude as the function values
at the ends of the initial interval for the search. Indeed, I am surprised
uniroot does not have such a warning, and have put such a check into one
of my own routines.

6 Conclusions and extensions

From the discussion above

• Methods for univariate rootfinding work efficiently and well but still
need “watching”. This applies to almost any iterative computation.

• There is a need for more “thoughtful” methods that give a user much
more information about his or her function and suggest potential issues
to be investigated. Such tools would be intended for use when the
regular tools appear to be giving inappropriate answers.

• As always, more good test cases and examples are useful to improve
our methods.

References

[1] Forman S. Acton, Numerical methods that work, Harper and Row, New
York, 1970.

[2] R. Brent, Algorithms for minimization without derivatives, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[3] J. C. Nash, Compact numerical methods for computers : linear algebra
and function minimisation, Hilger, Bristol :, 1979 (English).

29

