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Abstract—We present a scalable optimization algorithm and its
parallel implementation for two-stage stochastic programming
problems of large-scale, particularly the security constrained
optimal power flow models routinely used in electrical power
grid operations. Such problems can be prohibitively expensive
to solve on industrial scale with the traditional methods or in
serial. The algorithm decomposes the problem into first-stage and
second-stage optimization subproblems which are then scheduled
asynchronously for efficient evaluation in parallel. Asynchronous
evaluations are crucial in achieving good balancing and parallel
efficiency because the second-stage optimization subproblems
have highly varying execution times. The algorithm employs
simple local second-order approximations of the second-stage
optimal value functions together with exact first- and second-
order derivatives for the first-stage subproblems to accelerate
convergence. To reduce the number of the evaluations of compu-
tationally expensive second-stage subproblems required by line
search, we devised a flexible mechanism for controlling the step
size that can be tuned to improve performance for individual class
of problems. The algorithm is implemented in C++ using MPI
non-blocking calls to overlap computations with communication
and boost parallel efficiency. Numerical experiments of the
algorithm are conducted on Summit and Lassen supercomputers
at Oak Ridge and Lawrence Livermore National Laboratories
and scaling results show good parallel efficiency.

Index Terms—SCACOPF, Optimization, Parallelization

LLNL Release Number: LLNL-CONF-821097

I. INTRODUCTION

We present a scalable algorithm and the supporting high-
performance computing (HPC) implementation for solving
two-stage stochastic programming problems with recourse [1]–
[3]. While general to apply to various paradigms of opti-
mization under uncertainty, the methodology presented here
is driven by the problem of optimal operation of large-scale
electrical transmission power grids.
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Electricity generation and distribution in nationwide power
grid systems rely upon optimization models and tools to find
the power generation injection levels and transmission power
flows at each of the grid nodes such that the demand at
given substations is met at the lowest generation cost and
at minimum transmission losses [4]. Economic dispatch is
such an optimization model routinely and extensively used by
the power grid operators for intra-day scheduling operations.
Recently, alternating current optimal power flow (ACOPF)
models have been proposed, investigated, and in some cases
adopted in operations since they model the power grid more
accurately (e.g., capture reactive power and include transmis-
sion losses) than the economic dispatch counterparts.

Both economic dispatch and ACOPF models are becoming
increasingly challenged with the rising penetration of renew-
able (but highly intermittent) sources of energy (e.g., wind and
solar) and ongoing shifts in demand and generation, which are
caused by the emergence of commodity solar systems, battery
storage, and electric vehicles [5], [6]. To better accommodate
these emerging technologies, the power grid operators need
to operate more complex power grid systems under highly
stochastic demand and generation profiles and frequent equip-
ment failures.

Security constrained ACOPF (SCACOPF) is one of the
salient emerging optimization paradigms for increasing the
reliability of the power grid and ensuring its economic opera-
tion [7] under various types of failures. Used by almost every
power operator worldwide, SCACOPF extends the capabilities
of ACOPF by requiring that the state of the grid is secure
with respect to a comprehensive list of equipment contin-
gencies (i.e., failures of generators, transmission lines, and
transformers) and sometimes under stochastic demand and/or
generation [7], [8]. As a result, the SCACOPF mathematical
optimization problem reaches extreme scale as it literally
needs to simulate multiple ACOPF models (as many as the
number of contingencies, which are routinely O(105)) in
order to find a secure state of the grid. An equally important
challenge is given by the highly nonlinear and nonconvex



nature of SCACOPF (as well as of ACOPF), which makes
it difficult to find global (or at least good quality) optima of
the problem. On the other hand, SCACOPF models need to be
solved under strict time limitations, i.e., in real-time, to allow
ample adjustment time for the equipment (generation ramp up
or down, load shedding, transmission switching, etc.). These
challenges have sparked new research over the last decades
to study new scalable optimization algorithms and develop
parallel computer implementations for SCACOPF problems.

One popular approach is to apply distributed optimiza-
tion algorithms and solve the large system in parallel [9].
Geography-based distributed optimization algorithms where a
large system is divided into smaller-scale regions intercon-
nected through boundaries have been applied to power opti-
mization problems and many such applications rely on HPC
platforms [10]. Distributed algorithms such as the Benders
Decomposition [11] that decompose the full problem into a
master problem and contingency subproblems are also widely
researched. Depending on the formulation of the SCACOPF,
the solutions to the contingency subproblems could be used
to apply additional linearized constraints to the master prob-
lem [12] or filter selected sets of contingencies [13]. Under
the setup of two-stage stochastic programming, the master-
recourse decomposition occurs naturally and the objectives
from the contingencies, or second-stage subproblems, are part
of the objective of the master problem.

The parallel computing implementation of distributed opti-
mization algorithms has recently shown promising results for
reaching real-time solutions for SCACOPF. Dandurand [14]
proposed a primal-dual algorithm where the coupling con-
straints between the master problem and recourse subprob-
lems are relaxed through augmented Lagrangian method.
Phan [15] proposed a practical algorithm based on augmented
Lagrangian constraint relaxation and the alternating direction
method of multipliers (ADMM). Kraning et al. [16] developed
a decentralized scheme based on ADMM where neighboring
devices exchange messages containing solutions from the
previous iteration. Linderoth et al. [17] introduced a decompo-
sition algorithm for two-stage stochastic linear programming
with recourse and an associated asynchronous parallel imple-
mentation. The algorithm can be roughly described as a trust-
region bundle method. The optimization-based decompositions
from [18] and [19], break down the SCACOPF problem
at the level of the formulation into base case ACOPF and
contingency response ACOPF subproblems and enforce the
reconciliation between subproblems’ coupling variables using
first-order gradient-based methods [18] or carefully chosen
approximations for the coupling terms [19]. Kim et al. [20]
also proposed a trust-region bundle method to solve the
decomposed Lagrangian master problem. They also proposed
an asynchronous load scheduling algorithm to improve parallel
efficiency. Other authors explored parallelization on the solver
level. Qiu et al. [21] formed the SCACOPF problem using
barrier method and developed a parallel GMRES algorithm
to solve it. In [22]–[24], the SCACOPF problem is solved in
parallel by decomposing the linear algebra of interior-point

methods [25] using a Schur complement technique.
The present work fits under the umbrella of optimization-

based decomposition and has three main contributions to ex-
isting state-of-the-art HPC for optimization. First, we propose
a sequential quadratic programming approach [25] that uses
exact Hessian from the base case ACOPF with Barzilai-
Borwein-like spectral (gradient-based) approximations [26] for
the Hessian of the contingency subproblem solutions. This
could potentially lead to a fast converging (e.g., higher than
first-order) method while preserving the good parallel effi-
ciency of gradient-like methods for second-stage subproblems.
Second, we use a line-search-free algorithm and update the
variables at each iteration based on the solution of the local
subproblems, most of which can be solved in parallel. This
development greatly improves computational efficiency since
contingency solutions are the most computationally expensive
part of the algorithm and traditional line search algorithms
would require multiple such solutions each iteration. Finally,
we devise a simple yet effective asynchronous scheduling
strategy for reducing the load imbalance that occurs in the
evaluation of the second-stage or contingency subproblems.
The load imbalance is pervasive in SCACOPF and common
in stochastic optimization because a handful of contingency
second-stage optimization subproblems are much more im-
pactful (and, thus, require much longer solution times) than
the great majority of the subproblems.

The paper is organized as follows. In Section II, we describe
mathematically the SCACOPF problem and the more abstract
general two-stage stochastic programming problem. In Sec-
tion III, the optimization algorithm is introduced together with
necessary assumptions. We discuss in detail the adjustable up-
date rules for the approximations of the second-stage optimal
value functions. The parallel implementation of the algorithm
is presented in Section IV, particularly the asynchronous Mes-
sage Passing Interface (MPI) communication scheme between
the base case problem and recourse subproblems. Numerical
experiments on supercomputers are shown in Section V with
both the convergence and scaling results.

II. PROBLEM DESCRIPTION AND COMPUTATIONAL
SPECIFIC

Stochastic programming is one of the widely used
paradigms of optimization under uncertainty. In this paper
we consider two-stage stochastic programming problems with
recourse, which can be mathematically formulated as

min
x∈Rn

f(x) +R(x)

s.t. c(x) = cE

dl ≤ d(x) ≤ du

xl ≤ x ≤ xu,

(1)

where the so-called recourse function R(x) = EΩ[r(x, ω)] is
defined by means of an expectation (integral) operator of the
optimal value function r(x, ω) of the second-stage problem
parameterized by a random vector ω over a probability space



Ω. More specifically, the second-stage optimal value function
has the following mathematical form:

r(x, ω) = min
y∈Rm

p(y, x, ω)

s.t. c(y, x, ω) = cE(ω)

dl(ω) ≤ d(y, x, ω) ≤ du(ω),

yl(ω) ≤ y ≤ yu(ω),

(2)

The second-stage problem is dependent on the first-stage
through the coupled variable x. In (1) and (2), the functions
f(·), p(·, ·, ω), c(·), c(·, ·, ω), d(·), d(·, ·, ω) are assumed to
be twice continuously differentiable and both their gradient
and the Hessian are available computationally. The entries of
the bound vectors dl and dl(ω) are in R ∪ {−∞}, while
the entries of the bounds vectors du and du(ω) are in
R∪ {+∞} (and the latter are strictly larger than the former).
The bounds on the optimization variables x and y are such
that xl ∈ (R∪{−∞})n, xu ∈ (R∪{+∞})n, xlj < xuj , for all
j ∈ {1, ..., n}, yl(ω) ∈ (R∪{−∞})m, yu(ω) ∈ (R∪{+∞})m
and ylj(ω) < yuj (ω), for all j ∈ {1, ...,m} and ω ∈ Ω.

SCACOPF models fits under the umbrella of (1)–(2). The
probability space consists of the set of all possible K con-
tingencies, each taken with equal probability 1

K . The first-
stage optimization variables x in (1) correspond to power
generation and power flow levels that are to be implemented
instantly in practice; while the second stage variables y are
recourse actions to be implemented should a contingency ω
occur. We also remark that (1)–(2) finds a secure state of the
power grid that minimizes current operation cost f(x) plus
the average monetary penalties p(x, y, ω) associated with not
satisfying power demand and violating grid’s power flows over
all contingencies ω ∈ Ω.

When K is relatively small, the problem can be solved
through off-the-shelf optimization packages, however, it is
usually difficult to satisfy the requirement of real-time solution
time. If the number of contingencies K is exceedingly large,
which is common in real-world power grid operations, then
solution through serial optimization solvers is intractable. We
approach such problems through the decomposition of the
recourse term in (1) and the use of parallel memory-distributed
computing.

We remark that our optimization methodology approach
is tailored to one important computational characteristic of
SCACOPF, namely, the evaluation of the recourse function
r(x, ω) for a given x and ω is of considerable computa-
tional cost as it requires solving the second-stage optimization
subproblem and can reach O(102) seconds for real-world
power grids. This characteristic justifies the use of distributed
computing instead of shared memory programming paradigms
since the inter-node communication overhead contributes to
a negligible fraction of total execution time. Further, the
algorithmic choices of Section III are steered towards using
as much second-order derivatives as possible without affecting
the decomposition properties of the algorithm and towards a
step length computation that is line search free; these choices

are made specifically to reduce the number of the expensive
recourse evaluations.

III. OPTIMIZATION ALGORITHM

Various sampling strategies are usually employed to formu-
late (1) as a so-called sample average approximation problem
(for example, see [1]). To simplify the notation, we describe
the case with equal probability and recast problem (1), referred
to in the remaining of the manuscript as the master problem,
as

min
x∈Rn

f(x) +
1

K

K∑
i=1

ri(x)

s.t. c(x) = cE

dl ≤ d(x) ≤ du

xl ≤ x ≤ xu.

(3)

Here ri : Rn → R, for all i ∈ 1, 2, ...K, the recourse functions,
are the optimal solution functions to recourse subproblems
in (4), namely,

ri(x) = min
yi∈Rm

pi(x, yi)

s.t. c(x, yi) = cE,i

dli ≤ d(x, yi) ≤ dui
yli ≤ yi ≤ yui .

(4)

The problem (3) without the average of recourse terms is
referred to as the base case problem. In many cases, ri(x) is
not available analytically since the evaluation of each ri(x)
for a given x requires solving an optimization problem nu-
merically. It is essential to approximate the recourse functions
ri(x) accurately throughout the solution algorithm. Similar
to the sequential quadratic programming (SQP) method [25],
we use a local quadratic approximation function to replace
1
K

∑K
i=1 ri(x) in the master problem and update the approx-

imation throughout the iterations. In this work, we assume
ri(x) is at least continuously differentiable, and its function
value and first-order gradient can be obtained computationally.
This allows us to approximate 1

K

∑K
i=1 ri(x) in (3) locally

at x = xk, k denoting the kth step in the iterative solution
process, with a quadratic function rk(x). The function rk(x)
takes the form of

rk(x) = rk0 + (gk0 )T (x− xk) +
1

2
αk ‖x− xk‖2

rk(xk) = rk0

drk

dx
(xk) = gk0 ,

(5)

where rk0 , g
k
0 denote the assembled average recourse function

value and gradient, respectively, and αk > 0 is the quadratic
coefficient. We point out that the exact second-order deriva-
tives (assuming that they exist mathematically, which is not
necessarily the case since optimal value functions ri(x) are
not twice differentiable in general [27]) are matrices with
considerably large dense blocks. As a result, the use of exact
second-order derivatives in (5) would cause the Hessian of the



objective of the master problem (3) to become quite dense
and result in a drastic increase in the computational cost
associated with solving the master problem. This would have
negative repercussions both on the solution time and on the
parallel efficiency of the decomposition scheme. Instead we
use a proximal second-order term 1

2αk ‖x− xk‖2 in (5) with a
diagonal Hessian, which does not affect the sparsity pattern of
the Hessian of the master problem and, thus, does not increase
the computational cost of solving the master problem.

The choice of αk is critical and problem dependent, as
it is a trade-off between robust convergence behavior (large
αk) and fast but potentially unstable convergence (small αk).
Our default option is inspired from the Barzilai-Borwein (BB)
gradient method [26], which can be interpreted as a secant
approximation, namely, the update rule for αk is

αk =
sTk−1yk−1

yTk−1yk−1
, (6)

where sk−1 = xk − xk−1, yk−1 = gk0 − gk−1
0 . This choice of

αk keeps the simple and sparse Hessian structure and can in
practice increase the convergence rate if the recourse functions
ri(x) have more favorable properties than being continuously
differentiable [28].

In other cases, particularly when 1
K

∑K
i=1 ri(x) is not twice

continuously differentiable and highly non-linear, αk can be
viewed similar to the inverse of a trust-region radius. The
larger αk is, the smaller the step size will be. Hence, we
can also update αk based on how accurate the previous
recourse approximation is, as in trust-region methods [25].
If the true recourse objectives 1

K

∑K
i=1 ri(xk+1) is close

to the approximation from the previous step rk(xk+1) =
rk0 + (gk0 )T (xk+1 − xk) + 1

2αk ‖xk+1 − xk‖2, αk can be
decreased to encourage larger step size. On the other hand,
if the difference between recourse approximation at the kth
step and its true value evaluated at (k + 1)th step is deemed
too large, αk should be increased and the step xk+1 can be
rejected altogether. In all cases, problem specific αmax and
αmin can be assigned to make the algorithm more efficient
and robust. This is the area of the algorithm that is rich for
experimentation.

Algorithm 1 Optimization algorithm with quadratic recourse
approximation

Solve the base case problem to obtain x0

Initialize α0, iteration count k = 0
while Stopping criteria not reached do

Solve the recourse problems at xk with method such as
interior-point methods and obtain rk0
Evaluate gk0 and construct approximation rk(x) to the
recourse functions through (5)
Take xk+1 as the solution to the master problem with the
approximation f(x) + rk(x) or let xk+1 = xk
Update αk based on the rule of choice
Calculate the convergence measure and increase k by 1

end while

The gradient-based stopping criteria in our implementation
is
∥∥gk+1

0 − gk0 − αk(xk+1 − xk)
∥∥ ≤ ε, where ε is the error tol-

erance. The left side of the inequality represents the difference
between the objective gradient of the true master problem at
xk+1 and its approximation at the kth step. Therefore, upon
meeting the criteria, the KKT conditions of the kth master
problem solution with the approximation rk(xk+1) leads to
the true master problem satisfying the KKT conditions to
the degree of ε at xk+1. The functional-value-based stopping
criteria, which measures how much the objective can still
be reduced, is

∣∣∣(gk0 )T (xk+k − xk) + αk ‖xk+1 − xk‖2
∣∣∣ ≤ ε.

While not as mathematically rigorous as the gradient-based
one, it can be effective and faster in practice.

The algorithm is outlined in Algorithm 1. To summarize,
we start by solving the master problem with zero recourse
(base case) and use the solution to initialize. Then, at the kth
iteration, the recourse optimization subproblems are evaluated
at xk and its optimal function value and gradient are obtained.
A local approximation to the assembled average recourse
functions is established with carefully chosen αk and used
to form the approximated master problem, which is then
optimized using state-of-the-art methods such as interior-point
methods. The next step xk+1 is taken to be the solution to the
master optimization problem if sufficient progress has been
made. The iteration stops when the stopping criteria is met or
maximum iterations have been reached.

IV. PARALLEL IMPLEMENTATION

The step of solving recourse subproblems in Algorithm 1 is
ripe for parallelization. The parallel implementation is based
on MPI while the algorithm itself is written in C++. In order to
implement the algorithm efficiently, the processors are divided
into a master rank and a number of evaluator ranks. The
master rank is responsible for the distribution and assembly
of recourse subproblems as well as the solution of the master
problem with recourse approximation, while the evaluator
rank computes the recourse subproblem assigned to it by the
master rank. The recourse subproblems, as shown in (4), can
have different constraints and, consequently, different optimal
objectives and computing time. Therefore, they are indexed to
be tracked and organized.

To start, the base case problem is solved on the master
rank and the solution is broadcasted to all ranks through
MPI Bcast, a blocking operation, to initialize x. Subsequently,
at each iteration, the indexed recourse subproblems are dis-
tributed to the evaluators by the master rank in a nonblock-
ing/asynchronous manner to improve workload balancing. The
master rank maintains the list of the recourse indices yet to
be assigned and posts a send of the index of the next recourse
subproblem to the next available evaluator.

The evaluator first posts a receive command to obtain the
recourse subproblem that it is assigned to. The problem is
then solved with the optimization algorithm of choice, in
our case interior-point methods. Whenever an evaluator rank
completes its current recourse subproblem optimization, it
posts a nonblocking send back to the master rank, which



contains the function value and gradient of its recourse func-
tion. The master rank constantly checks for such a send and
once it receives the signal, retrieves all relevant information.
If there are more recourse subproblems left to be solved,
the master sends the next index in line to the now free
evaluator, and moves on to examine the other ranks. This
process keeps the evaluator ranks as busy as possible to
balance the different recourse subproblem load dynamically.
This communication is implemented with MPI Isend and
MPI Irecv while MPI Requests are used to verify whether
a send/receive operation is completed.

When the indices are exhausted, the master rank continues
to retrieve recourse function information until the last evaluator
rank has finished its task and sent back the result. It maintains
a list of evaluators that have completed their jobs and moves
on to the next phase in the iteration once the list contains
every evaluator rank. The master rank then sends out an end
signal (index number −1) to all evaluators. When an evaluator
receives an end signal, it continues onto the next phase in the
iteration itself as well.

The recourse functions are assembled on the master rank
given the function value and gradient from individual recourse
subproblems. The master problem with the recourse approxi-
mation given in (5) is solved using interior-point methods. This
step is done on the master rank alone with the evaluators idle
and is therefore designed to be as short as possible. The master
rank then checks the convergence measure using the new
solution to determine whether the program has successfully
found an optimum or should enter a new iteration. The updated
solution x is broadcasted (MPI Bcast) at the end of the
iteration to all ranks.

Both the master and recourse optimization problems are
solved with the HiOp optimization solver [29], developed at
Lawrence Livermore National Laboratory (https://github.com/
LLNL/hiop). HiOp is a suite of optimization solvers for solv-
ing nonlinear programming problems of various computational
specifics. It is a lightweight HPC library that leverages existing
data or task parallelism to parallelize the optimization itera-
tions. HiOp also implements specialized linear algebra kernels
to achieve fine grain parallelism. For example, many of HiOp’s
solvers are capable of multiple computing modes including
one that utilizes GPUs. The comparison of CPU computing
mode and CPU-GPU hybrid mode is provided in the numerical
experiments in Section V. The C++ implementation of the
algorithm can be found in the pridecomp-dev branch of HiOp.

The recourse subproblems are solved using HiOp’s mixed
dense-sparse solver that splits the problem’s matrices into
sparse and dense part in a way that allows efficient use of
GPUs in the linear algebra computations required by the un-
derlying interior-point optimization algorithm [30]. The mixed
dense-sparse HiOp solver is ported to GPUs using Umpire and
RAJA portability libraries [31], [32] and Magma library [33],
[34]. We used the CPU-GPU hybrid mode of this solver.
Under this mode, the solver keeps many of its data structures
(e.g., vectors, matrices, linear systems, problems’ derivatives,
etc.) on the GPU device to reduce CPU-GPU traffic and

performs the great majority of the arithmetic operations on
the device. Each MPI process uses one GPU and one CPU
core, the latter being primarily involved in logic control,
some problem preprocessing, and interprocess communication.
Currently, the interprocess (MPI-based) communication is a
two-step process as it performs a CPU-GPU transfer and then
the MPI transfer using the CPU memory space. We plan to
revisit this communication paradigm and take advantage of the
latest MPI directives that allow us to perform the interprocess
transfer directly from the devices’ memory spaces.

The master problem is solved using HiOp’s sparse solver
that is based on RAJA kernels and sparse linear solvers to
perform the computations of the interior-point optimization
algorithm. The porting of the HiOp’s sparse solver to GPUs is
currently under development and in the numerical experiments
of Section V we have only used it in the CPU mode.

V. NUMERICAL EXPERIMENTS

In this section we present the performance of the algorithm
on supercomputing platforms. To validate and benchmark the
algorithm and the distributed MPI communication scheme,
numerical experiments are carried out with realistic synthetic
optimization problems in the form of (3) and (4) mimicking the
structure and computational specific of SCACOPF problems.
In addition, we present the preliminary result of a 200-bus
SCACOPF problem [35] with 50 contingencies. The algorithm
applied uses the trust-region type update rule for αk, and
the objectives and constraints satisfy the assumption described
in Section III. The difference in solution time for individual
recourse subproblems is investigated as well.

The two supercomputers we worked on are the Lassen
system at Lawrence Livermore National Laboratory and Sum-
mit at Oak Ridge National Laboratory. The Lassen system
uses IBM Power9 CPUs with 44 cores and 4 NVIDIA V100
(Volta) GPUs per compute node. The CPU memory is 256
GB per node and 64 GB for GPUs. The GPU-GPU and CPU-
GPU shared memory is interconnected by NVLINK 2.0. The
Summit system is comprised of the IBM Power System AC922
node. Each compute node offers two IBM 22-core Power9
CPUs and six NVIDIA Tesla V100 accelerators, connected
via dual NVLINK bricks. Most Summit nodes contain 512
GB of DDR4 memory for use by the POWER9 processors,
96 GB of High Bandwidth Memory (HBM2) for use by the
accelerators.

First, the synthetic problem with the dimension of x at
n = 1000 and K = 1920 recourse subproblems is run on
Lassen from 120 MPI ranks to 960 ranks, with the recourse
subproblems solved via both CPU mode and CPU-GPU hybrid
mode with HiOp. For the CPU mode, we used 40 MPI pro-
cessors for each compute node while CPU-GPU hybrid mode
allows 4 processes per compute node due to the number of
GPUs available. The results are shown in Figure 1 and 2. Both
modes display high parallel efficiencies given the unbalanced
nature of the recourse subproblem loads. For CPU mode, the
strong scaling efficiency is 62% while for the hybrid mode it
is 73.1%. It is noticeable that the CPU mode consumes less

https://github.com/LLNL/hiop
https://github.com/LLNL/hiop


Fig. 1: Strong scaling plot on Lassen with HiOp on CPU mode.

Fig. 2: Strong scaling plot on Lassen with HiOp on CPU-GPU hybrid mode.

time compared to the CPU-GPU hybrid mode overall. This
leaves the parallelized part of the optimization algorithm in
CPU mode a smaller percentage of the overall execution time,
thus reducing scaling efficiency. The faster speed observed
with the CPU mode of HiOp is caused by the fact that the GPU
code is not fully optimized and that the recourse subproblems
are not large enough to reach the full potential of the high-end
Volta GPUs present on the two platforms we used.

Next, the same problem is run on Summit with recourse
subproblems solved in CPU-GPU hybrid mode. Each compute
node is assigned 6 MPI processes given its capacity of 6 GPUs.
To visualize the recourse subproblem loads, we recorded
the average time of solving them across all the indices and
iterations on all four different number of ranks on Summit.
Figure 3 illustrates the average, maximum and minimum time
for each recourse subproblem. It is clear that while the average
time does not change much against the number of processes,
individual recourse subproblem requires drastically different

Fig. 3: Average, maximum and minimum computing time for one recourse subproblem
solution, evaluated across all recourse subproblems and all iterations.

Fig. 4: Strong scaling plot on Summit for a single iteration. Dotted lines show ideal
speedups.

amount of computing time. The maximum time for a recourse
subproblem is 100% more than the minimum one. Similar be-
havior is observed when decomposed algorithms are applied to
SCACOPF problems as well [19]. The dynamic asynchronous
MPI communication scheme proposed is necessary for an
efficient algorithm given such loading conditions.

The strong scaling plots of a single iteration (iteration 50)
and the entire program on Summit are shown in Figure 4
and 5. High parallel efficiency can be observed on Sum-
mit, illustrating the effectiveness of the asynchronous MPI
scheme. The individual iteration scaling pattern matches that
of the entire program, indicating a stable parallel performance
throughout iterations. The strong scaling efficiencies based on
120 processes are 77.7% and 77.4% for iteration 50 and the
entire program, respectively.

On Summit, we also performed a weak scaling study,



Fig. 5: Strong scaling plot on Summit for the entire problem. Dotted lines show ideal
speedups.

Fig. 6: Weak scaling plot on Summit.

where both the number of recourse subproblems and number
of compute nodes (n = 1000) are varied. Each evaluator
rank has two recourse subproblems per iteration to solve and
the algorithm exits with the same number of iterations. The
numbers of ranks used are 120, 240, 480, and 960. The result
is shown in Figure 6 and the corresponding parallel efficiency,
using the 120-rank case as the reference, is 94.1%. It is noted
that such high efficiency is a result of the identical number of
iterations and an even number of tasks per rank and should be
regarded as the upper limit of weak scaling efficiency.

The algorithm result is validated through comparison with
solution to the non-decomposed problem where x and yi in (3)
and (4) are all treated as independent optimization variables.
The dimension of the optimization variables x and yi are
1000 with K = 1920 recourse subproblems. This leads to
the problem having 1.921 million variables and 1.92 million
constraints. It is solved directly via IPOPT in serial. The

Fig. 7: Objective v.s. iteration for the proposed algorithm. The solution given by IPOPT
is 0.50725508, marked by the blue dotted line.

optimal objective value is 0.507255, achieved in 51 iterations.
The iteration result of the proposed algorithm is presented
in Figure 7. The difference of the solutions between the two
methods is in the order of 10−6. The convergence rate appears
linear for this problem, especially approaching convergence.
Nevertheless, the algorithm is shown to successfully converge
to the optimal solution within 120 iterations with functional
value stopping criterion and a tolerance in the order of 10−7.

Finally, a 200-bus SCACOPF problem [35] with 50 contin-
gencies is run in HiOp GPU mode with the proposed algorithm
on Lassen. In particular, this power grid network is capable of
producing near-zero contingency cost which leads to a minimal
number of iterations upon convergence. Due to its relatively
small size, fewer ranks are used in the scaling plot shown
in Figure 8. The scaling efficiency is slightly worse due to
the reduced number of contingencies and iterations needed to
converge.

VI. CONCLUSIONS AND FUTURE WORK

We presented a scalable decomposed optimization algorithm
for two-stage stochastic problems, particularly for SCACOPF
problems. The algorithm constructs approximations of the
recourse functions and uses an iterative numerical optimiza-
tion scheme similar to sequential quadratic programming to
converge to an optimal solution. The parallelization of the
algorithm comes natural where the recourse subproblems are
distributed asynchronously through MPI. The algorithm is
shown to be convergent on numerical experiments and display
high scaling efficiency on two supercomputing systems.

In the future, the algorithm will be applied to more real-
world SCACOPF problems. Work will focus on improving the
algorithm, particularly the quadratic coefficient to potentially
converge faster. In addition, we will also apply and tune
the algorithm to more complex probability distributions (e.g.,
stochastic demand and generation in addition to contingencies)
in the stochastic programming problem formulation.



Fig. 8: Strong scaling plot on Lassen for a 200-bus SCACOPF problem with 50
contingencies. Dotted lines show ideal speedups.
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