
A memory-distributed quasi-Newton solver for
nonlinear programming problems with a small number

of general constraints

Cosmin G. Petraa,∗

aCenter for Applied Scientific Computing
Lawrence Livermore National Laboratory

7000 East Avenue, Livermore, CA 94550, USA.

Abstract

We address the problem of parallelizing state-of-the-art nonlinear program-
ming optimization algorithms. In particular, we focus on parallelizing quasi-
Newton interior-point methods that use limited-memory secant Hessian approx-
imations. Such interior-point methods are known to have better convergence
properties and to be more effective on large-scale problems than gradient-based
and derivative-free optimization algorithms. We target nonlinear and poten-
tially nonconvex optimization problems with an arbitrary number of bound
constraints and a small number of general equality and inequality constraints
on the optimization variables. These problems occur for example in the form of
optimal control, optimal design, and inverse problems governed by ordinary or
partial differential equations, whenever they are expressed in a “reduced-space”
optimization approach. We introduce and analyze the time and space complex-
ity of a decomposition method for solving the quasi-Newton linear systems that
leverages the fact that the quasi-Newton Hessian matrix has a small number of
dense blocks that border a low-rank update of a diagonal matrix. This enables
an efficient parallelization on memory-distributed computers of the iterations of
the optimization algorithm, a state-of-the-art filter line-search interior-point al-
gorithm by Wächter et. al. We illustrate the efficiency of the proposed method
by solving structural topology optimization problems on up to 4 608 cores on a
parallel machine.

Keywords: parallel optimization, parallel interior-point, quasi-Newton.

LLNL IM Release number: LLNL-JRNL-739001

∗E-mail address: petra1@llnl.gov.

Preprint submitted to Journal of Parallel and Distributed Computing May 8, 2018

1. Introduction

The complexity and dimensionality of optimization problems occurring in
various engineering areas, e.g. optimal control, optimal design, and inverse
problems, operations research, data analysis, and climate research have un-5

doubtedly increased enormously in the last decades. It is widely accepted that
high-performance computing and parallel numerical solvers are needed to solve
such complex and large-scale optimization problems. The present work joins the
efforts in developing parallel optimization solvers and presents a parallelization
methodology for nonlinear programming (NLP) algorithms.10

The community of mathematical programming has a long history of de-
veloping parallel optimization algorithms. We mention structure-exploiting
methods for stochastic optimization, such as parallel interior-point methods
(IPMs) [28, 19, 49], parallel simplex methods [41], DantzigWolfe or Benders
decomposition [40, 46, 14, 10], progressive hedging [53], many of which have re-15

sulted in massively parallel optimization solvers capable of achieving good par-
allel efficiencies on high-performance computing architectures [28, 42]. Central
to these methods is to leverage the underlying structure of the problem, which is
given by the presence of multiple optimization scenarios that are linked through
only a subset of so-called first-stage optimization variables, to decompose the20

linear algebra computations inside the optimization iterations. The methodol-
ogy presented in this paper is similar in this respect, however it addresses a
different computational setup. The evaluations of the functions and their gra-
dients are assumed to be performed efficiently on parallel machines, possibly by
using black-box simulators. This is almost always the result of a data-type of25

parallelism that the simulators exploit. In order to exploit this parallelism op-
portunity, the present work uses a limited-memory secant quasi-Newton interior-
point method and proposes a data-based parallelization approach for the linear
algebra computations inside the optimization iterations.

Our work is primarily motivated by structural topology optimization prob-30

lems that routinely occur in the optimal design of new materials and/or struc-
tures. This class of problems seeks to maximize the global stiffness of a struc-
ture while enforcing a maximum weight constraint; mathematically, they take
the form of optimization problems constrained by partial differential equations
(PDEs). The aforementioned simulator for evaluating the objective and con-35

straints and their derivatives is in this case a PDE solver for the so-called forward
or state linear elasticity problem and associated first-order adjoint sensitivity
problem. To give an idea about the extreme size of topology optimization prob-
lems, which are described in Section 2.1, we mention that these problems have
one optimization variable per discretization (finite) element; thus, optimization40

problems with billions of variables occur naturally for complex structures that
require a large number of elements in the finite element analysis. This has been
the case for example for wing plane structural design [1, 2].

However, since our methodology is developed under the more general frame-
work of mathematical programming, it is applicable to other PDE-constrained45

optimization problems, such as optimal control, optimal design, and inverse

2

problems, as well as to general nonlinear optimization problems. In the con-
text of PDE-constrained optimization, our optimization approach falls under
umbrella of “reduced-space” methods, see for example [32], which essentially
means that the optimization is performed only in the optimization variables50

and the system of equations governing the optimization is eliminated from the
problem formulation (hence the PDE solver for the forward and adjoint prob-
lems can be used as a black-box in the optimization). The community of PDE-
constrained optimization worked extensively to develop parallel algorithms, by
using a variety of optimization approaches: trust-region methods [37, 31], aug-55

mented Lagrangian methods in TAO [24, 44], Newton-Krylov [13, 11, 12], and
others. A detailed discussion of PDE-constrained optimization algorithms can
be found, for example, in [8, 9, 20, 33].

There is considerable evidence in mathematical programming and PDE-
constrained optimization [45, 13, 28, 49, 11, 12, 42] supporting that that second-60

order, Newton-like algorithms have improved theoretical properties (e.g., local
quadratic convergence rates) and practical performance (e.g., number of itera-
tions) over methods that make only use of gradients or do not employ deriva-
tive/sensitivity information. Even though second-order derivatives or Hessians
of the objective and constraints may exist mathematically, they may not be65

available computationally in some applications; for example, because of the
high human cost required to develop second-order sensitivities within existing
simulation engines. For this cases, quasi-Newton algorithms [22] are a prag-
matic choice since they can achieve local superlinear convergence and practical
performance that is better than gradient-based or derivative-free methods, with-70

out requiring the evaluation or application of the Hessian [21, 45, 47]. Quasi-
Newton methods with Hessian approximations based on limited-memory secant
updates [18] have been emerged as a computationally feasible and robust ap-
proach. The present work differentiates from existing quasi-Newton methods for
PDE-constrained optimization, e.g., [30, 36], by solving problems with general75

constraints (bounds, equality, and inequality) on the optimization variables in
parallel.

The community of structural engineering have studied extensively numerical
optimization techniques for topology optimization and a considerable number
of approaches have been emerged in the last decades. The method of mov-80

ing asymptotes (MMA) [54, 64, 55, 15, 3] is undoubtedly very popular. It
is essentially a sequential convex approximation method that uses only first-
order derivatives. Other approaches include optimality criteria [52, 6], interior-
point methods [43, 34, 35, 38], dual Lagrangian relaxation [23], and sequential
quadratic programming [51]. A recent extensive benchmark study [50] revealed85

that nonlinear programming solvers Ipopt [61, 60] and SNOPT [26] using second-
derivatives generally outperform other methods such as MMA and OC for topol-
ogy optimization. Furthermore, the quasi-Newton interior-point method from
Ipopt (denoted in the study by IPOPT-N), which is used in this paper, compares
favorably to OC and various flavors of MMA both in terms of computational90

cost and solution quality. The contribution of the present work in the context of
topology optimization is the parallelization of the state-of-the-art quasi-Newton

3

interior-point method from Ipopt.
Numerous parallelization techniques have been proposed for topology opti-

mization. For example, parallel versions of OC [63, 58] and MMA [15, 5, 1]95

exist and successfully used on HPC machines to design structures with more
than one billion degrees of freedom using HPC [1, 2]. Parallel interior-point
methods have been also developed [38]. Common to these approaches is the
use of iterative Krylov linear solvers and preconditioning technique specific to
the elasticity PDEs that leverage domain decomposition techniques to paral-100

lelize computations. Another notable parallelization approach is the domain
decomposition used with Lagrangian relaxation techniques from [23], which de-
composes the outer optimization computations. The parallelization technique
presented in this paper is of a different flavor and fits under the umbrella of
parallel direct methods for linear systems.105

The filter linesearch quasi-Newton IPM used in this work follows closely the
implementation present in the Ipopt solver [62]. This choice was motivated by
the emergence of Ipopt as a reliable state-of-the-art algorithm in the mathemati-
cal programming community [62]. However the parallel linear algebra techniques
proposed by this paper can be potentially used with other optimization meth-110

ods as well, e.g. almost any flavor of IPMs, sequential quadratic programming
methods, augmented Lagrangian methods, and possibly with trust-region meth-
ods. The contribution of this work consists of providing a general paralleliza-
tion methodology for the linear algebra of quasi-Newton nonlinear optimization
algorithms. We believe that this is a key step in facilitating the use of state-115

of-the-art algorithms developed by the mathematical programming community
for massively parallel optimization in various application areas.

2. The optimization problem and underlying data parallelism

In this work we consider general nonlinear, possibly nonconvex optimization
problems of the form

min
x∈Rn

f(x) (1)

s.t. c(x) = cE , (2)

dl ≤ d(x) ≤ du, (3)

xl ≤ x ≤ xu. (4)

Here f : Rn → R, c : Rn → RmE , and d : Rn → RmI . The bounds appearing
in the inequality constraints (3) are assumed to be dl ∈ RmI ∪ {−∞}, du ∈120

RmI ∪ {+∞}, dli < dui , and at least of one of dli and dui are finite for each i ∈
{1, . . . ,mI}. The bounds in (4) are such that xl ∈ Rn∪{−∞}, xu ∈ Rn∪{+∞},
and xli < xui , i ∈ {1, . . . , n}. For the rest of the paper m will denote mE +mI ,
i.e., the total number of constraints excepting the simple bounds constraints (4).

The computational method introduced in this paper addresses problems of125

the form (1)-(4) with large n and is tailored for a relatively small number of
general constraints m. Note that one can specify simple bounds on all the

4

optimization variables and doing so will not affect the efficiency of the paral-
lelization. The interior-point method with quasi-Newton approximation of the
Hessian used in this work requires first-order derivative to be specified for prob-130

lems of the form (1)-(4). This is addition to objective and constraints functions
evaluations. Computationally, in order to solve problems of the form (1)-(4)
one needs to specify the following “input data:”

(D1) the objective and constraint functions f(x), c(x), d(x);

(D2) the functions evaluating the first-order derivatives of the above: gradient135

∇f(x) ∈ Rn and Jacobians Jc(x) ∈ RmE×n and Jd(x) ∈ RmI×n; and

(D3) the vectors specifying the simple bounds xl and xu, the inequality bounds
dl and du, and the right-hand size of the equality constraints cE .

The salient idea of the data parallelism employed in this paper is to distribute
the data structures that have storage requirements dependent on n, i.e., x, xl,140

xu, ∇f(x), Jc(x), Jd(x) across MPI processes. The remaining of the problem’s
data, which has leading space complexity depending on m is replicated on each
rank. The replicated data include the function return scalar values f(x), c(x),
and d(x), the inequalities bounds dl and du, and the right-hand cE . As we will
later show this data decomposition will translate in efficient parallelization of145

the computations required by the optimization algorithm. We remark that there
are no matrices that have both the number of columns and rows depending on
n. As illustrated in Figure 1, the Jacobians Jc(x) and Jd(x) are distributed
column-wise. The function evaluations f(x), c(x), and d(x) are assumed to
be done in parallel and each rank has the return value. The evaluations of the150

gradient and Jacobians are assumed to be also performed parallel, however, each
rank updates only the local of the vector or matrix return value, as illustrated
in Figure 1.

Rank 1 Rank 2 . . . Rank p

x, xl, xu · · · · · · · · · · · ·
f(·), ci(·),di(·) val val · · · val

∇f(x) · · · · · · · · · · · ·

Jc(·), Jd(·) · · · · · · · · · · · ·

cE, dl, du

Figure 1: Depiction of the distribution of the data of the optimization problem (1)-(4)
across MPI processes. The vectors and matrices with storage dependent on the number of
optimization variables are distributed. Other data, i.e., scalar function values or vectors of
small size (shown in dashed dark grey boxes), are replicated on each rank.

5

2.1. Motivating example: structural topology optimization

We succinctly present the minimum compliance topology optimization prob-
lems [7, 50], which seek to maximize the global stiffness of a structure while en-
forcing a maximum structure weight constraint. The objective of the problem is
to minimize the compliance, defined as integral of the product of the displace-
ment field u and the applied external loads l. The displacement is obtained by
solving the linear elastic equilibrium partial differential equations. After the dis-
cretization using a finite element method (FEM), for example, these equations
take the form of K(ρ)u = l, where K is the finite element stiffness matrix, which
is positive definite, and ρ are the optimization or design variables representing
the relative density of the material in each finite element. These design variables
are constrained within [ρmin, 1], where ρmin is a small positive lower bound that
ensure the stiffness matrix K is invertible. Mathematically, minimum compli-
ance problems can be compactly expressed after a suitable discretization of the
continuum equations as

min
ρ,u

lTu (5)

s.t. K(ρ)u = l, (6)

ρmin ≤ ρ ≤ 1, (7)

aT ρ ≤ Vmax. (8)

The last inequality constraints is a maximum (relative) volume constraint that155

imposes a maximum structure weight constraint. The vector a in this constraint
represents the relative volume of the elements.

In this work we use a so-called reduced-space modeling and solution approach
to solve (5)-(8). Since K is invertible, the (state) variable u can be expressed
as an explicit function of the design variables, u(ρ) = K−1(ρ)l; as a result, the
above formulation can be expressed as a nonlinear optimization problem in ρ
only:

min
ρ

lTK−1(ρ)l (9)

ρmin ≤ ρ ≤ 1, (10)

aT ρ ≤ Vmax. (11)

It should be apparent that this formulation fits under the umbrella of nonlinear
programming problems (1)-(4).

A large body of work was done in the community of topology optimization160

to ensure good solid-void designs, e.g., by using an SIMP material power law
interpolation scheme [7], and to ensure the mathematical well-possessedness and
mesh independent solutions of (9)-(11), e.g. by employing density or Helmholtz
filters [39, 17, 16]. We mention that these improvements do not alter the math-
ematical formulation (9)-(11) as a nonlinear programming problem [50].165

A reduced-space PDE-constrained optimization solution approach for mini-
mum compliance problems (9)-(11) require the evaluation of the the objective

6

for a given vector of optimization variables ρ. This is performed by solving
the linear elasticity problem u(ρ) = K−1(ρ)l, for example by using parallel im-
plementations of the finite element method and multigrid linear solvers [1] and170

computing the inner product lTu(ρ). The gradient is computed by using adjoint
sensitivity analysis (for example see [57]), which approximately has the cost of
one objective function evaluation. Additional operations are performed for both
the objective and its gradient to apply the material interpolation scheme and the
filters. The constraint (11) is computed similarly. We note that this constraint175

may become nonlinear when filters are used.

3. The interior-point algorithm

The general NLP (1)-(4) is transformed internally by the optimization solver
to an equivalent form that is more amenable to the use of interior-point meth-
ods [45]. We use a form that uses slacks, which is also present in OOQP [25]
and PIPS-IPM [48] solvers and is similar to Ipopt [62]. This form can be
mathematically expressed as

min
x, d, sxl ,s

x
u, s

d
l ,s

d
u

f(x) (12)

s.t. c(x) = cE , [yc] (13)

d(x)− d = 0, [yd] (14)

d− sdl = dl, [vl] (15)

d+ sdu = du, [vu] (16)

x− sxl = xl, [zl] (17)

x+ sxu = xu, [zu] (18)

sxl , s
x
u, s

d
l , s

d
u ≥ 0. (19)

The symbols in brackets are Lagrange multipliers or the dual variables. They are
required because the interior-point method we use is a primal-dual method. The
inequality constraints that have infinite right-hand sides should be understood180

as not being part of the problem and their multipliers are zero.
Specific to interior-point methods is the use of log-barrier functions for the

inequality constraints. The log barrier function µ ln(·) is applied to each (entry
of the) signed slacks in (19)). IPMs solve a sequence of log-barrier problems,
each corresponding to a log-barrier parameter µk > 0; to achieve optimality,

7

µks are decreased such that µk → 0. The log-barrier subproblem is

min
x, d, sxl ,s

x
u, s

d
l ,s

d
u

f(x)− µ ln(sxl)− µ ln(sxu)− µ ln(sdl)− µ ln(sdu) (20)

s.t. c(x) = cE , [yc] (21)

d(x)− d = 0, [yd] (22)

d− sdl = dl, [vl] (23)

d+ sdu = du, [vu] (24)

x− sxl = xl, [zl] (25)

x+ sxu = xu. [zu] (26)

The optimal solution of the log-barrier problem is found by approximately
solving the first-order optimality conditions. To derive these, we first introduce
the Lagrangian function

Lµ(x, d, sxl , s
x
u, s

d
l , s

d
u; yc, yd, vl, vu, zl, zu) =

= f(x)− µ ln(sxl)− µ ln(sxu)− µ ln(sdl)− µ ln(sdu)

+ yTc (c(x)− cE) + yTd (d(x)− d)+

+ zTl (−x+ sxl + xl) + zTu (x+ sxu − xu)

+ vTl (−d+ sdl + dl) + vTu (d+ sdu − du),

which allows the optimality conditions for the log-barrier problem (20)-(26) to
be written as

∇Lµ(x, d, sxl , s
x
u, s

d
l , s

d
u; yc, yd, vl, vu, zl, zu) = 0.

Here the gradient is taken with respect to all arguments of Lµ. The stationarity
condition above can be written as

∇f(x) + JTc (x)yc + JTd (x)yd − zl + zu = 0,

−yd − vl + vu = 0,

c(x) = cE ,

d(x)− d = 0, (27)

−x+ sxl + xl = 0, x+ sxu − xu = 0,

−d+ sdl + dl = 0, d+ sdu − du = 0,

sxl zl = µe, sxuzu = µe, sdl vl = µe, sduvu = µe.

At each iteration, the linesearch IPM computes a search direction by solving
a linearization of the above system of equations and then updates the iteration185

using this direction [45, 62]. The barrier parameter µ is decreased whenever the
norm of the residual of (27), which we refer to as “log-barrier error”, is small.
The IPM reaches the optimality when µ is small, and the norm of the residual

8

of (27) for this value of µ, which we refer to as the “NLP error”, is also close to
zero [62].190

The search direction is computed by performing a (damped) Newton itera-
tion for the above nonlinear systems of equations using the incumbent optimiza-
tion iterate as starting point. The Newton direction [∆x , ∆d, ∆sxl , ∆sxu, ∆sdl ,
∆sdu, ∆yc, ∆yd, ∆vl, ∆vu, ∆zl, ∆zu] is obtained by solving the linear system

B∆x+ JTc (x)∆yc + JTd (x)∆yd −∆zl −∆zu = rx := −∇f(x)− JTc (x)yc,

− JTd (x)yd + zl − zu,
−∆yd −∆vl + ∆vu = rd := yd + vl − vu,

JTc (x)∆x = ryc := −c(x) + cE ,

JTd (x)∆x−∆d = ryd := d− d(x),

−∆x+ ∆sxl + xl = rxl := x− sxl − xl,
∆x+ ∆sxu − xu = rxu := x− sxu + xu,

−∆d+ ∆sdl + dl = rdl := d− sdl − dl, (28)

∆d+ ∆sdu − du = rdu := d− sdu + du,

Zl∆s
x
l + Sxl ∆zl = rszl := µe− sxl zl,

Zu∆sxu + Sxu∆zu = rszu := µe− sxuzu,
Vl∆s

d
l + Sdl ∆vl = rsvl := µe− sdl vl,

Vu∆sdu + Sdu∆vu = rsvu := µe− sduvu.

Here the uppercase symbols denote diagonal matrices having the diagonal given
by lowercases symbols, e.g., Xl = diag(xl). The matrix B is an approximation
of the Hessian of the Lagrangian namely

B ≈ ∇2
xxL(x, d, sxl , s

x
u, s

d
l , s

d
u; yc, yd, vl, vu, zl, zu).

This is dictated by the fact that the problems targeted in this work do not have
the Hessian available (not even in matrix-times-vector form). Hence our numer-195

ical optimization approach falls under the umbrella of quasi-Newton linesearch
IPMs [45]. Constructing B using secant approximations, as well as solving the
above linear system are discussed in detail in Section 4.1. We list a sketch of
the “outer” optimization loop in Algorithm 1. For the remaining of this sec-
tion, we use the following notations: x =

[
x, d, sxl , s

x
u, s

d
l , s

d
u

]
, y = [yc, yd], and200

z = [vl, vu, zl, zu].
Our implementation of the interior-point method follows the Ipopt’s quasi-

Newton IPM implementation and we refer the reader to [62] for the details of
Algorithm 1. Unless stated otherwise in Section 5, the algorithmic parameters of
our implementation are identical to Ipopt and are provided in [62]. For example,205

µ0 is taken 0.1 and σ0 has a value of 1.

9

Algorithm 1 Pseudocode of the linesearch IPM used in this paper

Input: User-supplied initial point x0, algorithm parameters µ0 and σ0, and
stopping tolerance εtol

1: Let µ = µ0

2: Adjust x0 for feasibility by projecting in the interior of the bounds box
3: Set the quasi-Newton approximation to B0 = σ0I
4: for k = 0, 1, . . . do
5: If NLP error less than εtol then break and return optimal solution
6: If log-barrier error less then 10 · εtol reduce µ and continue
7: Compute search direction [∆x,∆y,∆z] from (28) at incumbent iteration

[xk,yk, zk]
8: Backtracking linesearch to find primal and dual steplengths αp and αd
9: Update the iteration: xk+1 = xk + αp∆x, yk+1 = yk + αp∆y, and

zk+1 = zk + αd∆z
10: Update quasi-Newton Hessian approximation Bk+1.
11: end for

4. Parallelization of the interior-point linear systems

The majority of the computational cost of Algorithm 1 is given by the solu-
tion of the search direction linear system (28) in line 7 of Algorithm 1. Before
presenting the parallelization scheme of these linear systems we introduce the210

quasi-Newton Hessian approximation formula for B and a variant of it, in the
form of a compact inverse formula, that we derived for quasi-Newton IPMs.

The Ipopt solver, which serves as the benchmark solver in this paper, solves
the IPM linear systems in serial. Its solution technique for solving the quasi-
Newton linear system (28) uses a secant low-rank Hessian approximation similar215

to the one described in the next section; however, it relies on sparse linear solves
with multiple right-hand sides in order to deal efficiently with the low-rank
structure of the Hessian approximation (see [45, Chapter 19]). The approach
presented in this section is different and is based on dense linear algebra. We
build an explicit compact inverse formula for the low-rank Hessian approxima-220

tion and apply it (mostly as dense matrix-matrix multiplications) to compute a
“reduced” linear system (e.g., (42)) that is only of size m and, therefore, cheap
to solve. We mention that the underlying data parallelism of the optimization
problem transfers to the data structures and efficient computations decomposi-
tion, as we show later in this section.225

4.1. The secant quasi-Newton approximation of the Hessian

The BFGS formula is a popular and effective approach for Hessian approx-
imations [22, 47, 21, 45]. The salient idea of the BFGS method is to use the
change in the gradients,

wk := ∇xL(xk+1,yk, zk)−∇xL(xk,yk, zk) (29)

10

and in the optimization variables,230

pk := xk+1 − xk

during the previous iteration to build an approximation of the Hessian. Namely,
a secant equation, Bk+1pk = wk is enforced upon Bk+1. Among the many
symmetric matrices that satisfy the secant equation, the one closest to the
previous approximation Bk (in the sense of a weighted Frobenius norm, see [29,
45]) is chosen as a way to maintain Hessian information gathered during the235

previous optimization iterations. The matrix is given recursively by the formula

Bk+1 = Bk −
Bkpkp

T
kBk

pTkBkpk
+
wkw

T
k

wTk pk
. (30)

The initial approximation B0 is a scaled identity matrix. We remark that the
above formula is a rank-two update.

Storing a large number of pairs (pk, wk) quickly becomes a storage bottle-240

neck. Limited-memory variants of the secant BFGS formula (30) are used in
practice [18, 45]. The limited-memory secant BFGS approximations use only
the most recent l pairs (pi, wi), i = {k − l, . . . , k − 1}; after computing a new
iterate, the oldest pair is deleted and replaced by the newest one. It is generally
accepted that l ∈ {6, 12} offers a good trade-off between the cost per iteration245

and number of iterations [18].
An explicit matrix representation for the limited-memory secant BFGS ap-

proximation can be derived [18] in the form of

Bk = B0 − [B0Pk Wk]

[
PTk B0Pk Lk
LTk −Dk

]−1 [
PTk B0

WT
k

]
, (31)

where Pk = [pk−l, . . . , pk−1], Wk = [wk−l, . . . , wk−1], Lk ∈ Rl×l is given by

[Lk]ij =

{
pTi−1wj−1, if i > j
0, otherwise,

(32)

and Dk = diag
[
pTk−lwk−l, . . . , p

T
k−1wk−1

]
. Such compact representation is es-250

pecially useful in our interior-point method-based optimization approach since
it is a low-rank update of the diagonal B0, and can be leveraged to solve the
interior-point linear system (28) efficiently in parallel, as we show in Section 4.3.

4.2. Revisiting the secant quasi-Newton approximation to include the log-barrier
terms255

As we later show in (4.3), the BFGS compact representation (31) needs to
be revisited to allow the incorporation of the log-barrier terms. In particular,
multiple linear systems sharing the same matrix Bk+Dx, where Dx is a diagonal
matrix with positive diagonal entries, needs to be solved at each optimization
iteration by the elimination scheme of Section (4.3). For this reason we derive
an explicit formula for the inverse of Bk + Dx based on the compact represen-
tation (31) of Bk and Sherman-Morison-Woodbury formula. For compactness,

11

we write the compact representation (31) as Bk = B0 + UV UT . Our explicit
compact inverse representation is derived as follows:

(Bk +Dx)−1 =
(
B0 +Dx − UV UT

)−1
= (B0 +Dx)

−1

− (B0 +Dx)
−1
U
(
−V −1 + UT (Dx +B0)−1U

)−1
UT (Dx +B0)−1

= (B0 +Dx)
−1

− (B0 +Dx)
−1
U · L−TD−1L−1 · UT (Dx +B0)−1, (33)

where L and D are the matrix factors obtained from a LDLT factorization of
the matrix A = −V −1 + UT (Dx + B0)−1U ∈ R2l×2l. One can verify that A is
exactly

A =

[
PTk (B0(Dx +B0)−1B0 −B0)Pk PTk B0(Dx +B0)−1Wk − Lk
WT
k (Dx +B0)−1B0Pk − LTk WT

k (Dx +B0)−1Wk +Dk

]
. (34)

We also note that (Dx +B0) is positive definite diagonal matrix.
In what follows we discuss time and space complexities of260

(I) computing the inverse compact representation (33) and

(II) multiplying (Bk+Dx)−1 (as a way to solve with Bk+Dx) with one vector.

We assume that l = O(1) and n is much larger than l, l2, and l3.
For (I), the matrix A = −V −1 + UT (Dx + B0)−1U is first factorized using

a symmetric dense LDLT factorization, which has a time cost of (2l)3/3 and a265

O(l2) space cost [27]. The computation of A is based on (34) and only the (1, 1),
(2, 1), and (2, 2) blocks need to be computed since A is symmetric. This compu-
tation requires matrix-matrix dense operations (multiplications and additions)
and column/row scaling of matrices; as a consequance, the time complexities
for computing the above three blocks of A are (l2/2 + l + 3)n, (l2 + l + 1)n,270

and (l2/2 + l)n [27], for a total of (2l2 + 3l + 4)n. Additional computations
are required to compute the compact representation (31). We follow a similar
approach to the one in [18] and, at each optimization iteration, the compact
representation (31) is updated based on (32) by computing only the last ele-
ment in the diagonal Dk (one inner product of vectors of size n) and the last275

column in Lk (l inner products of vectors of size n). Thus, the time complexity
of updating the compact representation (31) is only O(ln). With all the above
complexity combined, the leading time complexity for (I.) is therefore O(l2n).

Furthermore, (II) is performed by multiplying in left-to-right order matri-
ces (33) with one vector of size n. During this step, the multiplications with the280

inverse factors are performed as dense triangular and diagonal solves with L,
D, and LT for a right-hand side of size l; thus, the cost is only O(l2) [27]; The
remaining (matrix-vector) multiplications have at most O(ln) cost; this cost is
reached when the multiplications with UT and U are performed. In summary,
the dominant cost in (II) is O(2ln).285

12

Finally, the leading space complexity of the compact inverse representation
is O(2ln), given by the storage requirements of Pk and Wk. The rest of the data
from (33) is at most linear in n.

4.3. Solving the linear systems of the quasi-Newton IPM

For compactness we drop the subscripts k, but we remind the reader that290

the solution methodology of this section is used at each optimization iteration.
Since many of block matrices in (28) are diagonals or identities, a series of
computationally efficient variable eliminations can be also performed. First,
observe that one can write

∆sxl = rxl + ∆x, ∆sxu = rxu −∆x, ∆sdl = rdl + ∆x, and ∆sdu = rdu −∆x. (35)

Furthermore, from the last four equations of (28) and the equations above, one
can also write

∆zl = −(Slx)−1 (Zl∆s
x
l + rszl) = −(Slx)−1∆x+ (Slx)−1(rszl − Zlrxl), (36)

∆zu = −(Sux)−1 (Zu∆sxu + rszu) = −(Sux)−1∆x+ (Sux)−1(rszu − Zurxu), (37)

∆vl = −(Sld)
−1 (Vl∆sdl + rsvl

)
= −(Sld)

−1∆x+ (Sld)
−1(rsvl − Vlrxl), (38)

∆vu = −(Sud)−1
(
Vu∆sdu + rsvu

)
= −(Sud)−1∆x+ (Sud)−1(rsvu − Vurxu). (39)

By substituting the expressions (35)-(39) into (28) and using the notation
Dx := (Sxl)−1Zl + (Sxu)−1Zu and Dd := (Sdl)−1Vl + (Sdu)−1Vu, one can obtain

(B +Dx) ∆x+ JTc ∆yc + JTd ∆yd = r̃x := rx + (Sxl)−1 (rszl − Zlrxl)

− (Sxu)−1 (rszu − Zurxu)

Dd∆d−∆yd = r̃d := rd + (Sdl)−1
(
rsvl − Vlrdl

)
− (Sxu)−1

(
rsvu − Vurdu

)
Jc∆x = ryc

Jd∆x−∆d = ryd .

This above linear system can be further reduced since Dd is a diagonal matrix295

and ∆d = D−1d (∆yd + r̃d); then the rest of directions can be computed from B +Dx JTc Jd
Jc 0 0
Jd 0 D−1d

 ∆x
∆yc
∆yd

 =

 r̃x
ryc
r̃yd

 , (40)

where r̃yd := ryd +
[
(Sdl)−1Vl + (Sdu)−1Vu

]−1
r̃d. We note that the symmetric

linear system (40) is commonly known in mathematical programming as the
augmented system [45].

Specific to our approach is that the augmented system (40) is further elim-300

inated, which is possible due to the compact inverse representation of B + Dx

that was derived in Section 4.2. Namely, since

∆x = (B +Dx)−1
(
r̃x − JTc ∆yc − JTd ∆yd

)
, (41)

13

one can reduce the augmented system to a system in (∆yc,∆yd) only:[
Jc(B +Dx)−1JTc Jc(B +Dx)−1JTd
Jd(B +Dx)−1JTc Jd(B +Dx)−1JTd +D−1d

] [
∆yc
∆yd

]
=

[
Jc(B +Dx)−1r̃x − ryc
Jd(B +Dx)−1r̃x − r̃yd

]
.

(42)
The space complexity of solving the above linear system is O(m2) [27], while
the time complexity of solving the dense linear system is O(m3) [27]. Here305

m = mE +mI denotes the total number of general constraints. We remark that
these complexities are negligible since m is O(1) in this work. The dominant
cost is given by the computation of the matrix and right-hand side in (42). For

this, (B +Dx)−1 is applied to JTc , JTd , R̃x. Only m+ 1 such multiplication are
needed because the symmetry is exploited. Since each of the multiplications has310

a cost of O(ln), as we have showed in Section 4.2, the resulting time complexity
is O(mln). This is in fact the dominant time complexity term for the operations
presented in this section. This should be apparent by remarking that the elimi-
nations that lead to the reduced systems (41) and (42) involve only element-wise
vector-vector operations and diagonal matrix-vector multiplications and, there-315

fore, are of at most O(n) complexity [27]; furthermore, one should remark that
the time complexity for evaluating the right-hand sides in (28) is only O(mn).

The leading space complexity for the IPM linear systems (28), (40), and
(42) is given by the storage of Jacobians Jc and Jd as dense matrices and it is
O(mn) [27]. This does not include the space complexity of the compact inverse320

representation of B+Dx, which is analyzed in the previous section. The rest of
the IPM linear algebra objects are diagonal matrices and vectors and have space
cost of at most O(n). In addition, (m + 1)n doubles are used to temporarily
store the intermediary terms (B+Dx)−1JTc , (B+Dx)−1JTd , and (B+Dx)−1r̃x
in (42). Hence, the total space complexity for the solution to the augmented325

system (42) is O(2mn).

4.4. Summary of the time and space complexities of linear algebra

It should be apparent from the complexity discussions presented in Sec-
tion 4.2 and Section 4.3 that the solution of the IPM search direction linear
systems (28) using the methodology proposed by this paper has330

• O((ml + l2)n) time complexity and

• O(2(l +m)n) space complexity.

4.5. Parallel computational approach and theoretical parallel speedup analysis

The data parallelism discussed in Section 2 applies equally to the data struc-
tures used by the IPM Algorithm 1 and the linear algebra technique we proposed335

in Section 4.2 and Section 4.3. The scalars and the data (i.e., vectors and ma-
trices) with storage that does not depend on the number of variables n are
replicated on all MPI processes. For example, the matrices Lk and Dk in the
compact representation (31), the matrix A in the compact inverse represen-
tation (33), as well as the reduced IPM system matrix (42) are stored on all340

14

ranks. Vectors and matrices with storage depending on n are distributed across
ranks; we mention that the Pk and Wk in the compact representation (31) are
distributed row-wise.

Similarly, the parallel computations required by our decomposition fall under
two categories: replicated computations corresponding to replicated data and345

“embarrassingly parallel” computations performed concurrently by the ranks
on their local slices of data. For a given operation, the ideal execution time on
P ranks is given by t0 + tP + cP , where t0 is the time spent in the replicated
computations, tP is the time spent by the ranks in the embarrassingly parallel
computations, and cP is the communication time. By Amdahl’s law [4], the350

serial bottleneck t0, communication cost cP , and load imbalance are the limiting
factors in achieving parallel efficiency. We note that that the ranks have identical
workload throughout the proposed computational technique. Therefore, for
simplicity, we assume tP is the same across processes, that is, we assume perfect
load balancing; note that in this case one necessarily obtains that t1 = Ptp.355

We are interested in understanding the potential for speedup of our parallel
linear algebra computations. For this we look at the relationship between the
relative speedup with P ranks over 1 rank and the ideal speedup P , namely
at their ratio eP = t1+t0

tp+cP+t0
/P as a measure of speedup efficiency: eP = 1

corresponds to perfect speed-up and small eP corresponds to poor speedup. We360

write eP = t1+t0
t1+P (cp+t0)

= 1−
P−1
P t0+cP

t1
P +t0+cP

≈ 1− t0+cP
t1
P +t0+cP

for large P , which gives

the following a relationship for the ideal speedup:

eP ≈ 1− 1
t1

P (t0+cP) + 1
. (43)

This indicates that the speedup is good (eP close to one), whenever fP := t1/P
t0+cP

is large. We chose to use fP as an indicator of speed-up since it measures the
ratio of “parallelizable” computations and total “serial” time, i.e., serial bottle-365

neck t0 plus communication time cP , and, thus, it is unit-less. For example, if fP
is 1 for some number of ranks P , then eP = 0.500 (or 50% speed-up efficiency);
if fP is 10, then eP = 0.909; and, if fP is 100, then eP = 0.990.

We now discuss the fP term for the computation of the inverse compact
representation (33) and the solution of the reduced IPM system (42). These370

two have the largest serial bottlenecks t0 (as well as and nontrivial cP). For the
inverse compact representation (33), the dominant term in t0 is coming from
the factorization of A and is approximately O(8l3/3) [27]. The computation of
A has a dominant cost t1 = O(2l2n) as we have shown in Section 4.2. Therefore
fP ≈ 3n

4Pl , which shows that speed-up is good as long as n/P , which is the375

size of the local data, is large compared to l, the memory of the quasi-Newton
method. A similar analysis reveals that fP ≈ 3nl

8m2P for solving the reduced
IPM system (42); this points out that the solution technique for system (42)
also speeds up well as long as n/P is larger relatively to m2/l.

We have neglected the communication time cP in the analysis of the previous380

paragraph since it is not apparent to us what would be the exact theoretical

15

cost cP of MPI AllReduce-based interprocess communication. We observe that
the operations analyzed in the previous paragraph involve parallel matrix mul-
tiplications that require reducing O(m2) and O(l2) doubles on all processors;
it is reasonable to assume that the cost cP of each reduce operations is at385

least O(log(P) ·max(l2,m2)) [59]. Consequently, n/P needs to be larger than
log(P) max(l2,m2) in order to have a large fP and obtain good speed-up. Fi-
nally, we observe that the serial bottleneck correspondent is only max(l,m2/l),
as we have shown in the previous paragraph. This alludes to the possibility
that communication overhead can adversely impact the speed-up before (for a390

smaller P) the serial bottleneck does.

5. Parallel performance evaluation

In this section we evaluate the parallel efficiency and limitations of the par-
allel linear algebra proposed in this paper (in Section 5.2) and provide evidence
that our implementation, namely Hiop solver, is scalable and removes the par-395

allel bottleneck associated with performing the optimization in serial.
Futhermore, we compare the optimization quality of Hiop with that of

Ipopt using limited-memory BFGS quasi-Newton Hessian approximations (in
Section 5.3) and find that the two solver perform very similarily when solving
cantilever beam topology optimization problems. In the benchmarking paper400

of Rojas-Labanda and Stolpe [50], Ipopt using using limited-memory BFGS
quasi-Newton Hessian approximations (refered in the benchmarking paper as
IPOPT-N) was identified to compare favourably to MMA and OC for this class
of problems. Therefore, this section seems to indicate that Hiop is a scalable
alternative to existing state-of-the-art optimization methods in topology opti-405

mization.

5.1. Implementation details and computational setup

The parallel linear algebra methodology of this paper has been implemented
in the Hiop optimization solver. Hiop is a compact C++ solver that relies on
internal parallel data structures and parallel implementation for basic linear410

algebra (vectors and matrices) and optimization-related (iterates, directions,
linear systems) data structures. These are implemented using BLAS/LAPACK
for intranode computations and MPI for interprocess communication. In fact,
these two packages are the only external dependencies. Hiop is publicly
available at https://github.com/LLNL/hiop under an open-source BSD license.415

Hiop implements Algorithm 1 following the filter linesearch IPM of Ipopt [62].
Hiop currently implements only the monotone strategy for decreasing the log-
barrier parameter µ. Also, it does not have capabilities for automatic problem
rescaling nor for feasibility restauration.

In Table 1 we list the options used with Hiop (commit 533c8c8) and Ipopt420

version 3.12.5 that are not default, differs between the two solvers, or differs
from the benchmark paper of Rojas-Labanda and Stolpe [50] . O1 was used for
Ipopt since it was reported in [50] that is superior to ’monotone’. O2 and O3

16

https://github.com/LLNL/hiop

were chosen for Hiop because they perform better than the default ones (0.2
and 1.5) for the problems in Section 5.3. Option O4 is not supported by Hiop425

and left to default for Ipopt; however, Ipopt did not report internal scaling for
any of the problems solved in our experiments. Finally, the default value for O5,
which is 6 for both Hiop and Ipopt, performed for the problems in Section 5.3
considerably better than the value of 25 reported in [50].

ID Option name Option value
Hiop Ipopt

O1 mu strategy monotone adaptive
O2 mu linear decrease factor 0.4 (disabled by O1)
O3 mu superlinear decrease power 1.25 (disabled by O1)
O4 nlp scaling method (not supported) default
O5 limited memory max history default default

Table 1: Listed are the Hiop and Ipopt algorithm and solver parameters that are not default,
differs between the two solvers, or differs from the benchmark paper of Rojas-Labanda and
Stolpe.

The simulations were ran on the Quartz cluster at Lawrence Livermore Na-430

tional Laboratory. Quartz has 2 634 nodes, each running an Intel Xeon E5-2695
processor with 36 2.1 Ghz cores and 128 Gb RAM memory, and is equipped with
an Omni-Path network. We used MVAPICH 2.2 and Intel 18.0.1 compilers
with -O2 code optimization flag.

5.2. Strong scaling study435

To study Hiop’s speed-up potential and limitations, we perform a so-called
strong scaling study, in which the same problem is solved with an increas-
ingly large number of nodes/cores. For this we have interfaced Hiop with
TOPOPT In PETSc [1], which is scalable code that uses finite element method
and multigrid solvers for solving topology optimization problems, including440

structural problems such as (10). We solve the default problem test in TOPOPT In PETSc,
a 3D cantilever beam discretized by 512 × 256 × 256 finite elements, approxi-
mately 101.6 million degrees of freedom. For this problem the number of opti-
mization variables n is slightly more than 33.5 million. In addition, Ipopt was
interfaced with TOPOPT In PETSc as a validation method for Hiop’s imple-445

mentation. We mention that the results of both Hiop and Ipopt matched the
MMA implementation present in TOPOPT In PETSc. Both Hiop and Ipopt
are stopped when the NLP error is less than 10−5. Ipopt was used with the
MA27 as the linear solver. We mention that Ipopt runs in serial, using only
one process. To give an idea about the cost of the simulation, we mention that450

Hiop requires about 60 iterations and more than 2 hours on 288 cores to solve
the problem.

The first simulation is on 288 ranks (288 cores/8 nodes) and corresponds
to the minimum number of nodes for which the test problem does not run
out of memory. We then doubled the number of ranks repeatedly to up to455

17

P ranks Time per iteration (s) Speed-up efficiency eP
and cores Hiop Overall Hiop Overall

288 0.259 126.117 100.00% 100.00%
576 0.132 65.995 98.26% 95.55%

1152 0.072 34.708 90.26% 90.84%
2304 0.043 18.564 75.29% 84.92%
4608 0.033 10.866 49.69% 72.54%

Table 2: Shown are Hiop’s and overall topology optimization average iteration times and
speed-up efficiencies during a strong scaling study.

Figure 2: Execution (wall-clock) times of the optimization solvers Hiop and Ipopt and overall
optimization with the two solvers (first 20 iterations). The plot shows the benefits of using
parallel optimization (Hiop solver) in addition to parallel finite element analysis in topology
optimization.

4 608 (4 608 cores/128 nodes). All the runs were repeated three times and the
average performance over these runs is reported. The test problem was solved
to completion once, on 288 ranks as it is described above. For all the other runs,
the optimization was stopped after 20 iterations to avoid excessive consumption
of computing resources. The execution times per iteration shown in Table 2 are460

averaged over these 20 iterations (and the three repeated runs). In Table 2,
we also show the observed speed-up efficiencies eP . We first observe that the
Hiop speeds up well up to 2 304 ranks/cores; for the 4 608 ranks simulation,
the speed-up efficiency is only 49.69%. For this simulation, the iteration time
is on average merely 0.033 seconds, which makes it likely that the interprocess465

communication overhead on 128 nodes is the culprit for the deterioration of the
speed-up efficiency, as we anticipated in Section 4.5.

We also observe that Hiop’s time is only a small fraction of the total sim-

18

ulation time (< 0.5%). As a consequence, the speed-up efficiency is mainly
given by the multigrid linear solver and is quite good. We mention that neither470

TOPOPT In PETSc nor Hiop were profiled and optimized for this architecture,
which could reduce execution times. Such efforts will be considered in future
work.

of # of iterations Optimal objective
Mesh size variables Hiop Ipopt Hiop Ipopt
256× 768 196.6K 198 176 2.0867 2.1528

512× 1 536 786.4K 89 132 2.1761 2.2272
1 024× 3 072 3.1M 67 70 2.1730 2.2431

Table 3: Shown are the number of iterations and value of the compliance found by Hiop

and Ipopt with BFGS Hessian approximations when solving a problem on a increasingly fine
meshes.

Finally, in Figure 2, we show the execution times of Ipopt and overall opti-
mization using Ipopt together with the corresponding times obtained with Hiop475

from columns two and three in Table 2). Ipopt, a serial solver, quickly becomes
the serial bottleneck of the simulation, to the extent that it drastically affects
the speed-up of the overall optimization process. As a side note, we mentioned
that Hiop on only one process is still faster than Ipopt. The goal of this figure
is mostly instructive, to point out that scalable solvers for the linear elasticity480

forward problem and adjoint sensitivities are not enough for scalable topology
optimization and they need to be complemented with scalable optimization al-
gorithms and solvers.

5.3. Optimization quality

The experiments performed in this section aim at testing the quality of op-485

timization of Hiop. For this we compare Hiop with Ipopt when optimizing
cantilevel beam structures, which are standard test problems in topology opti-
mization. We find that the two solvers perform almost identically. Of interest
to the community of topology optimization may be the following two additional
findings. First, the iteration count of the IPM-based Hiop and Ipopt does not490

seem to degrade for this class of problems when the mesh is refined. Second,
neither of the IPM solvers exhibit Newton- and quasi-Newton-like superlinear
convergence; in fact, the convergence rate seems to deteriorates close to opti-
mality. The negative implication of this behavior is that the iteration count for
these topology optimization problems can grow significantly when the problem495

is resolved under an only slightly increased tolerance.
We solve a standard 2D cantilever beam structure of dimension 1× 3 under

load that is applied in the middle of the right side. The SIMP penalty parameter
was set to 3 and the volume/mass constraint was chosen to be Vmax = 0.15. The
Helmholtz filter [39, 17, 16] with a filter radius of 0.015625 was used. The prob-500

lem setup and the meshes (of dimensions 256×768, 512×1 536, and 1 024×3 072)

19

are courtesy of mechanical engineers colleagues at Lawrence Livermore National
Lab. Hiop was interfaced with the Livermore Design Optimization (LIDO)
project, which is under ongoing developement and has similar capabilities to
TOPOPT In PETSc. The solutions of these problems, which are visually dis-505

played in Figures 4, 5, and 6, have been found valid by mechanical engineers
involved in the LIDO project [56]. A quick look at the optimal structures in
Figures 4, 5, and 6 shows that the designs found by Hiop are very similar to the
designs found by Ipopt for all the three meshes.

Figure 3: The compliance objective function is plotted at each iteration of Hiop and Ipopt
for each of the six runs performed for Table 3. The two quasi-Newton IPM solvers converge
similarily despite using slightly different strategies for decreasing the barrier parameters. In
addition, the convergence behaviour seems to be mesh independent.

In addition to the options presented in Table 1, both Hiop and Ipopt have510

been used with ’acceptable tol’ set to 5 × 10−6 and ’tol’ set to 10−6. For all
the three meshes used, the two solvers have converged under the “acceptable
tolerance” criterion, which means that the NLP error was below the ’accept-
able tol’ for 15 consecutive iterations (but it did not fall below the ’tol’ value).
The initial point was a design initialized to 0.15, which is the value of the vol-515

ume/mass constraint. The problems on the 512×1 536 and 1 024×3 072 meshes
were rescaled so that the compliance evaluated at the initial point was equal to
the compliance at the initial point on the 256× 768 mesh. We remark that the
NLP errors at the initial point were slightly smaller for the two finer meshes,
which could explain why both Hiop and Ipopt terminated in less iterations for520

these meshes.
The convergence behavior of Hiop and Ipopt, which is shown in Figure 3, is

very similar for all three meshes for the first 60 − 70 iterations. This behavior
is encouraging since it may be an indicator that IPMs with BFGS Hessian ap-

20

(a) Hiop design

(b) Ipopt design

Figure 4: Shown are designs found by Hiop and Ipopt for the 256 × 768 mesh.

proximations can be promising candidates for large-scale topology optimization525

problems. However, we would like to stress that considerable additional numer-
ical experiments, which are outside the scope of this paper, are needed in order
to substantiate this claim.

We also remark that the adaptive µ-reduction strategy of Ipopt appear to
be slightly faster initially. However, the monotone strategy used by Hiop (also530

present in Ipopt) seems to find local minima faster (and of better quality as
shown in Table 3). After 50 iterations, the speed of convergence of both solvers
degrades substantially, as it can be seen in Figure 3. Both Hiop and Ipopt spend
many iterations to converge. We mention that in all of the runs, including those
of the previous section, local superlinear convergence of was never observed535

for Hiop and Ipopt. This alludes to the possibility that topology optimization
problems do not possess the mathematical properties needed by quasi-Newton
methods to achieve superlinear convergence and that further algorithmic re-
search is needed to obtain this desirable convergence behaviour for topology
optimization problems.540

21

(a) Hiop design

(b) Ipopt design

Figure 5: Shown are designs found by Hiop and Ipopt for the 512 × 1 536 mesh.

6. Conclusions

We have presented linear algebra techniques necessary to parallelize quasi-
Newton interior-point methods using limited-memory secant updates. For this
we leveraged the fact that the secant Hessian approximation has a small num-
ber of dense blocks that border a low-rank update of a diagonal matrix and545

exploited the data parallelism present in the simulation (in our case linear elas-
ticity solve based on finite-element method and multigrid solvers) that defines
the optimization problem. We also have shown linear time and space complexity
of our linear algebra method and discussed the theoretical potential for speed-
up. The latter was demonstrated computationally when solving a structural550

topology optimization problem in parallel on up to 4, 608 processes and cores.
Future work will be dedicated to a thorough profiling and code optimization

of our parallel implementation. Given the reliance of methodology presented
here on dense linear algebra, we also plan to revisit the linear algebra technique
and possibly the IPM for GPU computations.555

22

(a) Hiop design

(b) Ipopt design

Figure 6: Shown are the designs found by Hiop and Ipopt for the 1 024 × 3 072 mesh.

Acknowledgments

This work performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. The author also acknowledges the support from the LDRD Pro-
gram of Lawrence Livermore National Laboratory under the projects 16-ERD-560

025 and 17-SI-005. The author also acknowledges the valuable feedback from
the two anonymous reviewers.

References

[1] N. Aage, E. Andreassen, and B. S. Lazarov, Topology optimization
using PETSc: An easy-to-use, fully parallel, open source topology565

optimization framework, Structural and Multidisciplinary Optimization,
51 (2015), pp. 565–572.

[2] N. Aage, E. Andreassen, B. S. Lazarov, and O. Sigmund,
Giga-voxel computational morphogenesis for structural design, Nature, 550
(2017), pp. 1–11.570

23

[3] N. Aage and B. S. Lazarov, Parallel framework for topology
optimization using the method of moving asymptotes, Struct. Multidiscip.
Optim., 47 (2013), pp. 493–505.

[4] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in Proceedings of the April 18-20, 1967,575

spring joint computer conference, ACM, 1967, pp. 483–485.

[5] O. Amir, M. Stolpe, and O. Sigmund, Efficient use of iterative solvers
in nested topology optimization, Structural and Multidisciplinary Opti-
mization, 42 (2010), pp. 55–72.

[6] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and580

O. Sigmund, Efficient topology optimization in MATLAB using 88 lines of
code, Structural and Multidisciplinary Optimization, 43 (2011), pp. 1–16.

[7] M. P. Bendsøe and O. Sigmund, Topology Optimization, Springer
Berlin Heidelberg, 2004.

[8] L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van585

Bloemen Waanders, Real-Time PDE-Constrained Optimization, Soci-
ety for Industrial and Applied Mathematics, 2007.

[9] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloe-
men Waanders, eds., Large-Scale PDE-Constrained Optimization, Lec-
ture Notes in Computational Science and Engineering, Vol. 30, Springer-590

Verlag, Heidelberg, 2003.

[10] J. R. Birge and F. Louveaux, Introduction to stochastic programming,
Springer-Verlag, New York,, 1997.

[11] G. Biros and O. Ghattas, Parallel domain decomposition methods for
optimal control of viscous incompressible flows, in Proceedings of Parallel595

CFD ’99, Williamsburg, VA, May 1999.

[12] , Parallel Newton-Krylov algorithms for PDE–constrained
optimization, in Proceedings of SC99, Portland, Oregon, 1999.

[13] , Parallel Lagrange–Newton–Krylov–Schur methods for
PDE-constrained optimization. Part I: The Krylov–Schur Solver, SIAM600

Journal on Scientific Computing, 27 (2005), pp. 687–713.

[14] J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagas-
tizábal, Numerical Optimization, Springer-Verlag, New York, 2003.

[15] T. Borrvall and J. Petersson, Large-scale topology optimization in
3D using parallel computing, Computer Methods in Applied Mechanics and605

Engineering, 190 (2001), pp. 6201 – 6229.

[16] B. Bourdin, Filters in topology optimization, International Journal for
Numerical Methods in Engineering, 50 (2001), pp. 2143–2158.

24

[17] T. E. Bruns and D. A. Tortorelli, Topology optimization of
non-linear elastic structures and compliant mechanisms, Computer Meth-610

ods in Applied Mechanics and Engineering, 190 (2001), pp. 3443 – 3459.

[18] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of
quasi-Newton matrices and their use in limited memory methods, Mathe-
matical Programming, 63 (1994), pp. 129–156.

[19] N. Chiang, C. G. Petra, and V. Zavala, Structured nonconvex615

optimization of large-scale energy systems using PIPS-NLP, in Power Sys-
tems Computation Conference (PSCC), 2014, Aug 2014, pp. 1–7.

[20] J. C. De los Reyes, Numerical PDE-constrained optimization, Springer,
2015.

[21] J. Dennis and J. J. Moré, A characterization of superlinear convergence620

and its application to quasi-newton methods, Mathematics of computation,
28 (1974), pp. 549–560.

[22] J. E. Dennis, Jr and J. J. Moré, Quasi-newton methods, motivation
and theory, SIAM review, 19 (1977), pp. 46–89.

[23] A. Evgrafov, C. J. Rupp, K. Maute, and M. L. Dunn, Large-scale625

parallel topology optimization using a dual-primal substructuring solver,
Structural and Multidisciplinary Optimization, 36 (2008), pp. 329–345.

[24] E. Gawlik, T. Munson, J. Sarich, and S. M. Wild, The TAO
linearly-constrained augmented Lagrangian method for PDE-constrained
optimization, Preprint ANL/MCS-P2003-0112, Mathematics and Com-630

puter Science Division, (2012).

[25] E. M. Gertz and S. J. Wright, Object-oriented software for quadratic
programming, ACM Transactions on Mathematical Software, 29 (2003),
pp. 58–81.

[26] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP635

algorithm for large-scale constrained optimization, SIAM Review, 47
(2005), pp. 99–131.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns
Hopkins University Press, 3rd ed., October 1996.

[28] J. Gondzio and A. Grothey, Exploiting structure in parallel640

implementation of interior point methods for optimization, Computational
Management Science, 6 (2009), pp. 135–160.

[29] O. Guler, F. Gurtuna, and O. Shevchenko, Duality in quasi-Newton
methods and new variational characterizations of the DFP and BFGS
updates, Optimization Methods Software, 24 (2009), pp. 45–62.645

25

[30] E. Haber, Quasi-Newton methods for large-scale electromagnetic inverse
problems, Inverse Problems, 21 (2005), pp. 305–329.

[31] M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP
method for equality constrained optimization, SIAM Journal on Optimiza-
tion, 24 (2014), pp. 1507–1541.650

[32] R. Herzog and K. Kunisch, Algorithms for PDE-constrained
optimization, GAMM-Mitteilungen, 33 (2010), pp. 163–176.

[33] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization
with PDE Constraints, Springer, 2009.

[34] R. Hoppe, S. Petrova, and V. Schulz, Primal-dual newton-type655

interior-point method for topology optimization, Journal of Optimization
Theory and Applications, 114 (2002), pp. 545–571.

[35] R. H. W. Hoppe, C. Linsenmann, and S. I. Petrova, Primal-dual
newton methods in structural optimization, Computing and Visualization
in Science, 9 (2006), pp. 71–87.660

[36] G. J. Kennedy, Large-scale multimaterial topology optimization for
additive manufacturing, in 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Kissimmee, FL, 2015.

[37] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloe-
men Waanders, Inexact objective function evaluations in a trust-region665

algorithm for PDE-constrained optimization under uncertainty, SIAM
Journal on Scientific Computing, 36 (2014), pp. A3011–A3029.

[38] M. Kočvara and S. Mohammed, Primal-dual interior point multigrid
method for topology optimization, SIAM Journal on Scientific Computing,
38 (2016), pp. B685–B709.670

[39] B. S. Lazarov and O. Sigmund, Filters in topology optimization based
on helmholtztype differential equations, International Journal for Numeri-
cal Methods in Engineering, 86, pp. 765–781.

[40] J. Linderoth and S. Wright, Decomposition algorithms for stochastic
programming on a computational grid, Comput. Optim. Appl., 24 (2003),675

pp. 207–250.

[41] M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu, Parallel
distributed-memory simplex for large-scale stochastic LP problems, Com-
putational Optimization and Applications, 55 (2013), pp. 571–596.

[42] M. Lubin, C. G. Petra, M. Anitescu, and V. Zavala, Scalable680

stochastic optimization of complex energy systems, in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, New York, USA, 2011, ACM, pp. 64:1–64:64.

26

[43] B. Maar and V. Schulz, Interior point multigrid methods for topology
optimization, Structural and Multidisciplinary Optimization, 19 (2000),685

pp. 214–224.

[44] T. Munson, J. Sarich, S. Wild, S. J. Benson, and L. C. McInnes,
TAO 3.7 user manual, Tech. Rep. ANL/MCS-TM-322, Mathematics and
Computer Science Division, Argonne National Laboratory, 2017.

[45] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New690

York, 2nd ed., 2006.

[46] W. Oliveira, C. Sagastizbal, and S. Scheimberg, Inexact bundle
methods for two-stage stochastic programming, SIAM Journal on Opti-
mization, 21 (2011), pp. 517–544.

[47] C. G. Petra, N. Chiang, and M. Anitescu, A structured695

quasi-Newton algorithm for separable optimization with incomplete
Hessian information, submitted to SIAM Journal on Optimization, (2018).

[48] C. G. Petra and et. al., PIPS solvers suite for parallel optimization
on high-performance computing platforms. https://github.com/

Argonne-National-Laboratory/PIPS, October 2016.700

[49] C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner, An augmented
incomplete factorization approach for computing the Schur complement in
stochastic optimization, SIAM Journal on Scientific Computing, 36 (2014),
pp. C139–C162.

[50] S. Rojas-Labanda and M. Stolpe, Benchmarking optimization solvers705

for structural topology optimization, Structural and Multidisciplinary Op-
timization, 52 (2015), pp. 527–547.

[51] , An efficient second-order sqp method for structural topology
optimization, Structural and Multidisciplinary Optimization, 53 (2016),
pp. 1315–1333.710

[52] G. Rozvany and M. Zhou, The coc algorithm, part i: Cross-section
optimization or sizing, Computer Methods in Applied Mechanics and En-
gineering, 89 (1991), pp. 281 – 308. Second World Congress on Computa-
tional Mechanics.

[53] S. M. Ryan, R. J. B. Wets, D. L. Woodruff, C. Silva-Monroy, and715

J. P. Watson, Toward scalable, parallel progressive hedging for stochastic
unit commitment, in 2013 IEEE Power Energy Society General Meeting,
July 2013, pp. 1–5.

[54] K. Svanberg, The method of moving asymptotes - a new method for
structural optimization, International journal for numerical methods in en-720

gineering, 24 (1987), pp. 359–373.

27

https://github.com/Argonne-National-Laboratory/PIPS
https://github.com/Argonne-National-Laboratory/PIPS
https://github.com/Argonne-National-Laboratory/PIPS

[55] , A class of globally convergent optimization methods based on
conservative convex separable approximations, SIAM journal on optimiza-
tion, 12 (2002), pp. 555–573.

[56] D. A. Tortorelli. private communication, 2018.725

[57] D. A. Tortorelli and P. Michaleris, Design sensitivity analysis:
Overview and review, Inverse Problems in Engineering, 1 (1994), pp. 71–
105.

[58] K. Vemaganti and W. Eric Lawrence, Parallel methods for optimality
criteria-based topology optimization, 194 (2005), pp. 3637–3667.730

[59] Victor Eijkhout with Robert van de Geijn and Edmond Chow,
Introduction to High Performance Scientific Computing, lulu.com, 2011.
http://www.tacc.utexas.edu/~eijkhout/istc/istc.html.

[60] A. Wächter and L. T. Biegler, Line search filter methods for nonlinear
programming: Local convergence, SIAM Journal on Optimization, 16735

(2005), pp. 32–48.

[61] , Line search filter methods for nonlinear programming: Motivation
and global convergence, SIAM Journal on Optimization, 16 (2005), pp. 1–
31.

[62] A. Wächter and L. T. Biegler, On the implementation of740

an interior-point filter line-search algorithm for large-scale nonlinear
programming, Mathematical Programming, 106 (2006), pp. 25–57.

[63] S. Wang, E. de Sturler, and G. H. Paulino, Largescale topology
optimization using preconditioned krylov subspace methods with recycling,
International Journal for Numerical Methods in Engineering, 69 (2006),745

pp. 2441–2468.

[64] C. Zillober, A globally convergent version of the method of moving
asymptotes, Structural and Multidisciplinary Optimization, 6 (1993),
pp. 166–174.

28

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

	Introduction
	The optimization problem and underlying data parallelism
	Motivating example: structural topology optimization

	The interior-point algorithm
	Parallelization of the interior-point linear systems
	The secant quasi-Newton approximation of the Hessian
	Revisiting the secant quasi-Newton approximation to include the log-barrier terms
	Solving the linear systems of the quasi-Newton IPM
	Summary of the time and space complexities of linear algebra
	Parallel computational approach and theoretical parallel speedup analysis

	Parallel performance evaluation
	Implementation details and computational setup
	Strong scaling study
	Optimization quality

	Conclusions

