
HiOp – User Guide

version 0.7

by

Cosmin G. Petra, Nai-Yuan Chiang, and Jingyi Wang

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

7000 East Avenue,
Livermore, CA 94550, USA.

Oct 15, 2017
Updated Sep 30, 2022

Technical report LLNL-SM-743591

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any war-
ranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United
States government or Lawrence Livermore National Security, LLC, and shall not
be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Contents

1 Introduction 4

2 Installing/building HiOp 5
2.1 Prerequisites . 5
2.2 Building, testing, and installing HiOp . 5
2.3 Support of host-device computations using (generic)CPU-(NVIDIA/AMD)GPU

hardware . 6
2.4 Building extra features . 6

3 Interfacing with HiOp 7
3.1 The NLP with dense constraints formulation requiring up to first-order derivative

information . 7
3.1.1 The C++ interface . 7
3.1.2 Specifying the optimization problem . 8
3.1.3 Specifying the inter-process/memory distribution of the problem 9
3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation 10

3.2 General sparse NLPs requiring up to second-order derivative information 11
3.2.1 C++ interface to solve sparse NLPs . 12
3.2.2 Specifying the optimization problem . 12
3.2.3 Calling HiOp for a hiopInterfaceSparse formulation 14
3.2.4 Solvers options for hiopInterfaceSparse NLP formulations 15

3.3 NLPs in the mixed dense-sparse (MDS) form . 15
3.3.1 The C++ interface . 17
3.3.2 Calling HiOp for a hiopInterfaceMDS formulation 21

3.4 Structured NLPs suitable to primal decomposition (PriDec) schemes 22
3.5 Specifying a starting point for the optimization process 23
3.6 Obtain information from HiOp . 25
3.7 Compiling and linking your project with the HiOp library 27

4 Solver options 27
4.1 Options for NLP solvers . 28

4.1.1 Termination criteria and output . 28
4.1.2 Filter-IPM algorithm selection and parameters 29
4.1.3 Line search and step computation . 30
4.1.4 Feasibility restoration . 31
4.1.5 Elastic mode . 31
4.1.6 Regularization . 31
4.1.7 Solving internal linear systems . 32
4.1.8 Linear algebra computational kernels . 34
4.1.9 Problem preprocessing . 35
4.1.10 Miscellaneous options . 36

4.2 Options for PriDec solver . 36
4.2.1 Termination criteria and output . 37
4.2.2 Algorithm selection and parameters . 37
4.2.3 Miscellaneous options . 37

2

5 Licensing and copyright 38

6 Acknowledgments 39

A Appendix 40
A.0.1 Condensed Linear System . 40
A.0.2 Normal Equation . 41

3

1 Introduction

This document describes the HiOp suite of HPC optimization solvers for some large-scale noncon-
vex nonlinear programming problems (NLPs). Four main classes of optimization problems are
supported by HiOp.

� HiOp-Dense supports NLPs with billions of variables with or without bounds but only lim-
ited number of constraints. This solver is a memory-distributed, MPI-based quasi-Newton
interior-point solver using limited-memory approximations for the Hessians.

� HiOp-Sparse supports general sparse and large-scale NLPs sparse second-order derivatives.
This functionality is similar to that of the state-of-the-art Ipopt [7], but with additional
features such as the inertia-free approach [2]. The solver offers GPU acceleration via Nvidia
CUDA Toolkit or AMD HIP Toolkit, and requires RAJA portability abstraction layer when
GPU acceleration is enabled.

� HiOp-MDS supports NLPs that have dense and sparse blocks, for which a “Newton” interior-
point solver is available together with a specialized, so-called mixed dense-sparse (MDS)
linear algebra capable of achieving good performance on GPUs via Magma dense linear
solver.

� HiOp-PriDec is an asynchronous memory-distributed optimization solver for two-stage stochas-
tic programming problems. It implements a master-worker asynchronous scheduler based
on MPI to improve load balancing. GPU acceleration can be achieved in solving each
subproblem by HiOp-MDS or HiOp-Sparse.

This document includes instructions on how to obtain and build HiOp and a description of
its interface, user options, and use as an optimization library. Guidelines on how is best to use
the solver for parallel computations are also provided. The document generally targets users
of HiOp, but also contains information relevant to potential developers or advanced users; these
are strongly encouraged to also read the paper on the computational approach implemented in
HiOp [3].

While the MPI quasi-Newton solver of Hiop targets DAE- and PDE-constrained optimization
problems formulated in a “reduced-space” approach, it can be used for general nonconvex non-
linear optimization as well. For efficiency considerations, it is recommended to use quasi-Newton
Hiop for NLPs that have a relatively small number of general constraints, say less than 100; note
that there are no restrictions on the number of bounds constraints, e.g., one can specify simple
bounds on any, and potentially all the decision variables without affecting the computational
efficiency. The minimizers computed by HiOp satisfies local first-order optimality conditions.

The goal of quasi-Newton solver of HiOp is to remove the parallelization limitations of ex-
isting state-of-the-art solvers for nonlinear programming (NLP) and match/surpass the parallel
scalability of the underlying PDE or DAE solver. Such limitation occurs whenever the dimen-
sionality of the optimization space is as large as the dimensionality of the discretization of the
differential systems of equations governing the optimization. In these cases, the use of existing
NLP solvers results in i. considerable long time spent in optimization, which affects the parallel
scalability, and/or ii. memory requirements beyond the memory capacity of the computational
node that runs the optimization. HiOp removes these scalability/parallelization bottlenecks (for
certain optimization problems described above) by offering interface for a memory-distributed
specification of the problem and parallelizing the optimization search using specialized parallel

4

linear algebra technique. z The general computational approach in HiOp is to use existing state-
of-the-art NLP algorithms and develop linear algebra kernels tailored to the specific of this class
of problems. HiOp is based on an interior-point line search filter method [5, 6] and follows the
implementation details from [7], which is the implementation paper for IPOPT open-source NLP
solver. The quasi-Newton approach is based on limited-memory secant approximations of the Hes-
sian [1], which is generalized as required by the specific of interior-point methods for constrained
optimization problems [3]. The specialized linear algebra decomposition is obtained by using a
Schur-complement reduction that leverages the fact that the quasi-Newton Hessian matrix has a
small number of dense blocks that border a low-rank update of a diagonal matrix. The technique
is described in [3]. The Newton interior-point solver of HiOp uses linear algebra specialized to the
particular form of the MDS NLPs supported by this solver, for more details consult Section 3.3.

The C++ parallel implementation in HiOp is lightweight and portable since it is expressed
and implemented only in terms of parallel (multi-)vector operations (implemented internally using
BLAS level 1 and level 2 operations and MPI for communication) and BLAS level 3 and LAPACK
operations for small dense matrices.

By using multithreadead BLAS and LAPACK libraries, e.g., INTEL MKL, GotoBlas, Atlas,
etc, additional, intra-node parallelism can be achieved. These libraries are usually machine/hard-
ware specific and available for a variety of computer architectures. A list of BLAS/LAPACK
implementations can be found at https://en.wikipedia.org/wiki/Basic_Linear_Algebra_

Subprograms#Implementations.

2 Installing/building HiOp

HiOp is available on Lawrence Livermore National Laboratory (LLNL) github’s page at https:
//github.com/LLNL/hiop. HiOp can be obtained by cloning the repository or by downloading
the release archive(s). To clone from the repository, one needs to simply run

> git clone https://github.com/LLNL/hiop.git

2.1 Prerequisites

HiOp is written in C++11. At minimum, HiOp requires BLAS and LAPACK, however, the
more advanced solvers require additional dependencies (MPI, RAJA and Umpire, CUDA, HIP,
MAGMA, CoinHSL, PARDISO, STRUMPACK, etc.). The CMake-based build system of HiOp
generally detects these prerequisites automatically and warns the user when such prerequisites
are missing.

At this point the build system only supports macOS and Linux operating systems. On the
other hand, other than the build system, HiOp’s code is platform independent and should run fine
on Windows as well.

2.2 Building, testing, and installing HiOp

The build system is based on CMake. Up-to-date detailed information about HiOp custom builds
and installs are kept at https://github.com/LLNL/hiop.

A quick way to build and code is run the following commands in the ‘build/’ directory in the
root HiOp directory:

> cmake ..

5

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Implementations
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Implementations
https://github.com/LLNL/hiop
https://github.com/LLNL/hiop
https://github.com/LLNL/hiop

> make all

> make test

> make install

This will compile, build the static library and example executables, perform a couple of tests to
detect potential issues during the installation, and will install HiOp’s header and the static library
in the root directory under ‘ build defaultDist/’

2.3 Support of host-device computations using (generic)CPU-(NVIDIA/AMD)GPU
hardware

Starting version 0.3, HiOp offers support for offloading computations to NVIDIA GPU accelera-
tors when solving NLPs in the mixed dense-sparse (MDS) form. Support for CUDA should be
enabled during the build by using cmake options -DHIOP USE GPU and -DHIOP USE CUDA, which
will result in using the CUDA accelerators for the internal linear solves; in addition, the options
-DHIOP USE RAJA will employ RAJA portability abstraction to perform the remaining linear alge-
bra computations on the GPU device or on the host (with OpenMP acceleration). When RAJA
is enabled, HiOp can be instructed to use Umpire as memory manager (see option mem space). As
of v0.5, the combination of RAJA and Umpire enables HiOp to perform iterations of the Newton
IPM solver solely on the device by setting option mem space to device and option compute mode

to gpu.
Starting version 0.6, HiOp offers support for offloading computations to AMDGPU accelerators

when solving NLPs in the mixed dense-sparse (MDS) form. Support for HIP should be enabled
during the build by using cmake options -DHIOP USE GPU and -DHIOP USE HIP, which will result
in using the HIP accelerators for the internal linear solves.

HiOp’s cmake build system is quite versatile to find the dependencies required to offload compu-
tations to the device GPUs since was developed and tested on a few GPU-enabled HPC platforms
at Oak Ridge, Lawrence Livermore, and Pacific Northwest National Laboratories. These depen-
dencies consist of CUDA library version 10.1 or later, rocm library version 4.5.0 or later and a
recent Magma linear solver library (as well as a physical NVIDIA/AMD GPU device). HiOp offers
an extensive build support for using customized NVIDIA libraries, AMD libraries, and/or Magma
solver as well as for advanced troubleshooting. The user is referred to the following CMake scripts
for more details:

� cmake/FindHiopCudaLibraries.cmake

� cmake/FindHiopHipLibraries.cmake

� cmake/FindHiOpMagma.cmake scripts.

"Note: Installing NVIDIA CUDA, AMD HIP, and/or building Magma can be quite chal-
lenging. The user is encouraged to rely on preinstalled versions of these, as they are available via
module utility on virtually all high-performance computing machines. An example of how to sat-
isfy all the GPU dependencies on Summit supercomputer at Oak Ridge National Lab with a one
commands are available at https://github.com/LLNL/hiop/blob/master/README_summit.md.

2.4 Building extra features

To build the documentation for HiOp, enable the HIOP BUILD DOCUMENTATION option when con-
figuring. This option can only be enabled if a doxygen executable is available in the path. This

6

https://github.com/LLNL/hiop/blob/master/README_summit.md

option adds the make targets doc and install doc which build and install the documentation
respectively. When installed, html and LATEX/pdf documentation may be found under <install
prefix>/doc/html and <install prefix>/doc/html, respectively.

To build every configuration of HiOp for testing purposes, the build script has an option
./BUILD.sh --full-build-matrix. See the testing section of README developers.md for more
information.

Additional HiOp features not yet mentioned may be found in the top of the top-level CMakeLists.txt
file with a brief description.

3 Interfacing with HiOp

Once HiOp is built, it can be used as the optimization solver in your application through the
HiOp’s C++ interfaces and by linking with the static library. A shared dynamic load library can
be also built using HIOP BUILD SHARED option with cmake. There are three types of nonlinear
optimization or NLP formulations currently supported by HiOp. They are described and discussed
by the subsequent sections.

3.1 The NLP with dense constraints formulation requiring up to first-order
derivative information

A first class of problems supported by HiOp consists of nonlinear nonconvex NLP with dense
constraints of the form

min
x∈Rn

f(x) (1)

s.t. c(x) = cE [yc] (2)

[vl] dl ≤ d(x) ≤ du [vu] (3)

[zu] xl ≤ x ≤ xu [zu] (4)

Here f : Rn → R, c : Rn → RmE , d : Rn → RmI . The bounds appearing in the inequality
constraints (3) are assumed to be dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of
one of dli and dui are finite for all i ∈ {1, . . . ,mI}. The bounds in (4) are such that xl ∈ Rn∪{−∞},
xu ∈ Rn ∪ {+∞}, and xli < xui , i ∈ {1, . . . , n}. The quantities insides brackets are the Lagrange
multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by
convention zero.

The following quantities are required by HiOp:

D1 objective and constraint functions f(x), c(x), d(x);

D2 the first-order derivatives of the above: ∇f(x), Jc(x), Jd(x);

D3 the simple bounds xl and xu, the inequalities bounds: dl and du, and the right-hand size of
the equality constraints cE .

3.1.1 The C++ interface

The above optimization problem (1)-(4) can be specified by using the C++ interface, namely
by deriving and providing an implementation for the hiop::hiopInterfaceDenseConstraints

abstract class.

7

We present next the methods of this abstract class that needs to be implemented in order to
specify the parts D1-D3 of the optimization problem.

"Note: All the functions that return bool should return false when an error occurs, otherwise
should return true.

"Note: The C++ interface uses the integer types size type and index type. The type
hiop::size type is used for container (e.g., NLPs, vectors, matrices, etc.) sizes and generally
holds a nonnegative integer. The hiop::index type type should be used for indexes within
containers and is generally holding a nonnegative integer. These two types are defined within
HiOp namespace (see hiop defs.h) and currently set to int. This choice allows a streamlined
integration (that is, type conversions are not needed and arrays of indexes can be reused) with the
low level linear algebra libraries, such as sparse and dense linear solver libraries, which generally
use int.

3.1.2 Specifying the optimization problem

All the methods of this section are “pure” virtual in hiop::hiopInterfaceDenseConstraints

abstract class and need to be provided by the user implementation.

1 bool get_prob_sizes (size_type& n , size_type& m) ;

Provides the number of decision variables and the number of constraints (m = mE +mI).

1 bool get_vars_info (const size_type& n , double *xlow , double * xupp ,
2 NonlinearityType* type) ;

Provides the lower and upper bounds xl and xu on the decision variables. When a variable (let
us say the ith) has no lower or/and upper bounds, the ith entry of xlow and/or xupp should be
less than −120 or/and larger than 120, respectively. The last argument is not used and can set to
any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType.

1 bool get_cons_info (const size_type& m , double * clow , double * cupp ,
2 NonlinearityType* type) ;

Similar to the above, but for the inequality bounds dl and du. For equalities, set the corresponding
entries in clow and cupp equal to the desired value (from cE).

1 bool eval_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double& obj_value) ;

Implement this method to compute the function value f(x) in obj value for the provided decision
variables x. The input argument new x specifies whether the variables x have been changed since
the previous call of one of the eval methods. Use this argument to “buffer” the objective and
gradients function and derivative evaluations when this is possible.

1 bool eval_grad_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double * gradf) ;

8

Same as above but for ∇f(x).

1 bool eval_cons (const size_type& n , const size_type& m ,
2 const size_type& num_cons ,
3 const index_type* idx_cons , const double * x ,
4 bool new_x , double * cons) ;

Implement this method to provide the value of the constraints c(x) and/or d(x). The input
parameter num cons specifies how many constraints (out of m) needs to evaluated; idx cons array
specifies the indexes, which are zero-based, of the constraints and is of size num cons. These
values should be provided in cons, which is also an array of size num cons.

1 bool
2 eval_Jac_cons (const size_type& n , const size_type& m ,
3 const size_type& num_cons , const index_type* idx_cons ,
4 const double * x , bool new_x ,
5 double * Jac) ;

Implement this method to provide the Jacobian of a subset of the constraints c(x) and/or d(x)
in Jac; as for eval cons, this subset is specified by the array of row indexes idx cons. The
array Jac should contain the Jacobian row-wise, meaning that the each row of the Jacobian is
contiguous in memory and starts right after the previous row.

3.1.3 Specifying the inter-process/memory distribution of the problem

HiOp uses data parallelism, meaning that the data [D1]-[D3] of the optimization problem is dis-
tributed across processes (MPI ranks). It is crucial to understand the data distribution scheme
in order to use HiOp’s interface properly.

The general rule of thumb is to distribute any data of the problem with storage depending
on n, namely the decision variables x and their bounds xl and xu, the gradient ∇f(x), and the
Jacobians Jc(x) and Jd(x). The Jacobians, which are assumed to be dense matrices with n
columns, are distributed column-wise.

Rank 1 Rank 2 . . . Rank p

x, xl, xu · · · · · · · · · · · ·
f(·), ci(·),di(·) val val · · · val

∇f(x) · · · · · · · · · · · ·

Jc(·), Jd(·) · · · · · · · · · · · ·

cE, dl, du

Figure 1: Depiction of the distribution of the data of the optimization problem (1)-(4) across
MPI ranks. The vectors and matrices with storage dependent on the number of optimization
variables are distributed. Other data, i.e., scalar function values or vectors of small size (shown
in dashed dark grey boxes), are replicated on each rank.

"Note: All the eval functions of the C++ interface provides local array slices of the

9

above mentioned distributed data to the application code that implements HiOp’s C++ inter-
face. The size of these local slices is the “local size” (specified by the application code through
the get vecdistrib info method explained below) and is different from the “global size” n and
parameter n of methods.

"Note: Since the Jacobians are distributed column-wise, the implementer should populate the
Jac argument of eval Jac cons with the “local” columns.

On the other hand, the problem’s data that does not have storage depending on n, is not
distributed; instead, it is replicated on all ranks. Such data consist of cE , dl, du and the evaluations
of c(x) and d(x).

1 bool get_MPI_comm (MPI_Comm& comm_out) ;

Use this method to specify the MPI communicator to be used by HiOp. It has a default imple-
mentation that will provide MPI COMM WORLD.

1 bool get_vecdistrib_info (size_type global_n , size_type* cols) ;

Use this method to specify the data distribution of the data of the problem that has storage
depending on n. HiOp will call the implementation of this method to obtain the partitioning/dis-
tribution of an hypothetical vector of size global n across the MPI ranks. The array cols is of
dimension number of ranks plus one and should be populated such that cols[r] and cols[r+1]-1

specify the start and end indexes of the slice stored on rank r in the hypothetical vector. It has
a default implementation that will returns false, indicating that HiOp should run in serial.

"Note: HiOp also uses get vecdistrib info to obtain the information about the Jacobians’
distribution across MPI ranks (this is possible since they are column-wise distributed).

Examples of how to use these functions can be found in the standalone drivers in src/Drivers/

under the HiOp’s root directory.

3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation

Once an implementation of the hiop::hiopInterfaceDenseConstraints abstract interface class
containing the user’s NLP representation is available, the user code needs to create a HiOp prob-
lem formulation that encapsulate the NLP representation, instantiate an optimization algorithm
class, and start the numerical optimization process. Assuming that the NLP representation is im-
plemented in a class named DenseConsEx1 (deriving hiop::hiopInterfaceDenseConstraints),
the aforementioned sequence of steps can be performed by:

1 #inc lude ”NlpDenseConsEx1 . hpp” // the NLP rep r e s en t a t i on c l a s s
2 #inc lude ” h i op In t e r f a c e . hpp” //HiOP encapsu la t i on o f the NLP
3 #inc lude ”hiopAlgFi lterIPM . hpp” // s o l v e r c l a s s
4 us ing namespace hiop ;
5 . . .
6 DenseConsEx1 nlp_interface () ; // i n s t a n t i a t e your NLP ←↩

r ep r e s en t a t i on c l a s s
7 hiopNlpDenseConstraints nlp (nlp_interface) ; // c r e a t e HiOP encapsu la t i on
8 nlp . options . SetNumericValue (”mu0” , 0 . 01) ; // s e t i n i t i a l va lue f o r b a r r i e r ←↩

parameter
9 hiopAlgFilterIPM solver(&nlp) ; // c r e a t e a s o l v e r ob j e c t

10 hiopSolveStatus status = solver . run () ; // numerica l opt imiza t i on

10

11 double obj_value = solver . getObjective () ; // get ob j e c t i v e
12 . . .

Various output quantities of the numerical optimization phase (e.g., the optimal objective value
and (primal) solution, status of the numerical optimization process, and solve statistics) can be
retrieved from HiOp’s hiopAlgFilterIPM solver object. Most commonly used such methods are:

1 double getObjective () const ;
2 void getSolution (double * x) const ;
3 hiopSolveStatus getSolveStatus () const ;
4 i n t getNumIterations () const ;

The standalone drivers NlpDenseConsEx1, NlpDenseConsEx2, and NlpDenseConsEx3 inside di-
rectory src/Drivers/ under the HiOp’s root directory contain more detailed examples of the use
of HiOp.

3.2 General sparse NLPs requiring up to second-order derivative information

The sparse NLP formulation supports sparse optimization problems and requires Hessians of the
objective and constraints in addition to gradients/Jacobian of the objective/constraints.

min
x∈Rn

f(x) (5)

s.t. c(x) = cE [yc] (6)

[vl] dl ≤ d(x) ≤ du [vu] (7)

[zl] xl ≤ x ≤ xu [zu] (8)

Here f : Rn → R, c : Rn → RmE , d : Rn → RmI . The bounds appearing in the inequality
constraints (7) are assumed to be dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of
one of dli and dui are finite for all i ∈ {1, . . . ,mI}. The bounds in (8) are such that xl ∈ Rn∪{−∞},
xu ∈ Rn ∪ {+∞}, and xli < xui , i ∈ {1, . . . , n}. The quantities insides brackets are the Lagrange
multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by
convention zero. Internally, a slack variable s is introduced and the inequality constraints (7) are
replaced by additional equality constraints and boundary constraints:

d(x) = s [yd] (9)

[vl] dl ≤ s ≤ du [vu] (10)

As a result, HiOp requires the user to provide the following quantities:

D1 objective and constraint functions f(x), c(x), d(x);

D2 the first-order derivatives of the above: ∇f(x), Jc(x), Jd(x);

D3 The Hessian of the Lagrangian

∇2L(x) = ∇2f(x) +

mE∑
i=1

yc,i∇2ci(x) +

mI∑
i=1

yd,i∇2di(x). (11)

D4 the simple bounds xl and xu, the inequalities bounds: dl and du, and the right-hand size of
the equality constraints cE .

11

3.2.1 C++ interface to solve sparse NLPs

The above optimization problem (5)-(8) can be specified by using the C++ interface, namely by
deriving and providing an implementation for the hiop::hiopInterfaceSparse abstract class.

We present next the methods of this abstract class that needs to be implemented in order to
specify the parts D1-D4 required to solve a sparse NLP problem.

"Note: All the functions that have a bool return type should return false when an error
occurs, otherwise should return true.

"Note: hiop::hiopInterfaceSparse runs only in non-distributed/non-MPI mode. Intrapro-
cess acceleration can be obtained using OpenMP or CUDA.

3.2.2 Specifying the optimization problem

All the methods of this section are “pure” virtual in hiop::hiopInterfaceSparse abstract class
and need to be provided by the user implementation.

1 bool get_prob_sizes (size_type& n , size_type& m) ;

Provides the number of decision variables and the number of constraints (m = mE +mI).

1 bool get_vars_info (const size_type& n , double *xlow , double * xupp ,
2 NonlinearityType* type) ;

Provides the lower and upper bounds xl and xu on the decision variables. When a variable (let
us say the ith) has no lower or/and upper bounds, the ith entry of xlow and/or xupp should be
less than −120 or/and larger than 120, respectively. The last argument is not used and can set to
any value of the enum hiop::hiopInterface::NonlinearityType.

1 bool get_cons_info (const size_type& m , double * clow , double * cupp ,
2 NonlinearityType* type) ;

Similar to the above, but for the inequality bounds dl and du. For equalities, set the corresponding
entries in clow and cupp equal to the desired value (from cE).

1 bool eval_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double& obj_value) ;

Implement this method to compute the function value f(x) in obj value for the provided decision
variables x. The input argument new x specifies whether the variables x have been changed since
the previous call of one of the eval methods. Use this argument to “buffer” the objective and
gradients function and derivative evaluations when this is possible.

1 bool eval_grad_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double * gradf) ;

Same as above but for ∇f(x).

12

1 bool eval_cons (const size_type& n , const size_type& m ,
2 const size_type& num_cons ,
3 const index_type* idx_cons , const double * x ,
4 bool new_x , double * cons) ;

Implement this method to provide the value of the constraints c(x) and/or d(x). The input
parameter num cons specifies how many constraints (out of m) needs to evaluated; idx cons array
specifies the indexes, which are zero-based, of the constraints and is of size num cons. These
values should be provided in cons, which is also an array of size num cons.

1 bool
2 eval_Jac_cons (const size_type& n , const size_type& m ,
3 const size_type& num_cons , const index_type* idx_cons ,
4 const double * x , bool new_x ,
5 const size_type& nnzJacS , index_type* iJacS , index_type* jJacS ,
6 double * MJacS) ;

Implement this method to provide the Jacobian of a subset of the constraints c(x) and/or d(x) in
Jac; this subset is specified by the array idx cons. The last three arguments should be used to
specify the Jacobian information in sparse triplet format. iJacS and jJacS needs to be jointly
sorted: by indexes in iJacS and, for equal (row) indexes in iJacS, by indexes in jJacS.

Notes for implementer of this method:

2. When iJacS and jJacS are non-null, the implementer should provide the (i, j) indexes in
these arrays.

3. When MJacS is non-null, the implementer should provide the values corresponding to entries
specified by iJacS and jJacS.

4. iJacS and jJacS are both either non-null or null during the same call.

5. The pair (iJacS, jJacS) and MJacS can be both non-null during the same call or only one
of them non-null; but they will not be both null.

1 bool
2 eval_Jac_cons (const size_type& n , const size_type& m ,
3 const double * x , bool new_x ,
4 const size_type& nnzJacS , index_type* iJacS , index_type* jJacS ,
5 double * MJacS) ;

Evaluates the Jacobian of equality and inequality constraints in one call.

"Note: HiOp will call this method whenever the implementer/user returns false from the
previous, “two-calls” eval Jac cons. We remark that the two-calls method should return false

during both calls (for equalities and inequalities) made to it by HiOp in order to let HiOp know
that the Jacobian should be evaluated using the one-call callback listed above.

The main difference from the above eval Jac cons is that the implementer/user of this
method does not have to split the constraints into equalities and inequalities; instead, HiOp
does this internally.

Parameters:

13

� first four: number of variables, number of constraints, (primal) variables at which the Jaco-
bian should be evaluated, and boolean flag indicating whether the variables x have changed
since a previous call to any of the function and derivative evaluations.

� nnzJacS, iJacS, jJacS, MJacS: number of nonzeros, (i, j) indexes, and nonzero values of the
sparse Jacobian matrix. iJacS and jJacS needs to be jointly sorted: by indexes in iJacS

and, for equal (row) indexes in iJacS, by indexes in jJacS.

"Note: Notes 1-5 from the previous, two-call eval Jac cons applies here as well.

1 bool
2 eval_Hess_Lagr (const size_type& n , const size_type& m ,
3 const double * x , bool new_x , const double& obj_factor ,
4 const double * lambda , bool new_lambda ,
5 const size_type& nsparse , const size_type& ndense ,
6 const size_type& nnzHSS , index_type* iHSS , index_type* jHSS ,
7 double * MHSS)

Evaluates the Hessian of the Lagrangian function as a sparse matrix in triplet format.

"Note: Notes 1-5 from eval Jac cons apply to arrays iHSS, jHSS, and MHSS that stores the
sparse part of the Hessian.

"Note: The array lambda contains first the multipliers of the equality constraints followed by
the multipliers of the inequalities.

3.2.3 Calling HiOp for a hiopInterfaceSparse formulation

Once the sparse NLP is coded, the user code needs to create a HiOp problem formulation that
encapsulate the NLP representation, instantiate an optimization algorithm class, and start the
numerical optimization process. Assuming that the NLP representation is implemented in a class
named NlpEx6 (that derives from hiop::hiopInterfaceSparse), the aforementioned sequence
of steps can be performed by:

1 #inc lude ”NlpSparseEx1 . hpp” // the NLP r ep r e s en t a t i on c l a s s
2 #inc lude ” h i op In t e r f a c e . hpp” //HiOP encapsu la t i on o f the NLP
3 #inc lude ”hiopAlgFi lterIPM . hpp” // s o l v e r c l a s s
4 us ing namespace hiop ;
5 . . .
6 NlpSparseEx1 nlp_interface () ; // i n s t a n t i a t e your NLP r ep r e s en t a t i on←↩

c l a s s
7 hiopNlpDenseConstraints nlp (nlp_interface) ; // c r e a t e HiOP encapsu la t i on
8 nlp . options . SetNumericValue (”mu0” , 0 . 01) ; // s e t a non=de f au l t i n i t i a l va lue f o r←↩

ba r r i e r parameter
9 hiopAlgFilterIPM solver(&nlp) ; // c r e a t e a s o l v e r ob j e c t

10 hiopSolveStatus status = solver . run () ; // numerica l opt im iza t i on
11 double obj_value = solver . getObjective () ; // get ob j e c t i v e
12 . . .

Various output quantities of the numerical optimization phase (e.g., the optimal objective value
and (primal) solution, status of the numerical optimization process, and solve statistics) can be
retrieved from HiOp’s hiopAlgFilterIPM solver object. Most commonly used such methods are:

14

1 double getObjective () const ;
2 void getSolution (double * x) const ;
3 hiopSolveStatus getSolveStatus () const ;
4 i n t getNumIterations () const ;

The standalone drivers NlpSparseEx1 and NlpSparseEx2 inside directory src/Drivers/ under
the HiOp’s root directory contain more detailed examples of the use of the sparse NLP interface
of HiOp.

3.2.4 Solvers options for hiopInterfaceSparse NLP formulations

The optimization solver and linear algebra strategy within is controlled via the option KKTLin-
sys. For sparse NLPs, the default value (under “auto”) is “xdycyd”. Individual linear solvers
can be selected via the option linear solver sparse. GPU-capable linear solvers are available,
namely, cuSOLVER sparse LU and Ginkgo, when option “compute mode” is set to “hybrid”. We
recommend setting “KKTLinsys” to “auto”, “linear solver sparse“ to ‘’auto”, and choosing CPU
or GPU linear algebra backend by setting “compute mode” to “cpu“ or “hybrid”, respectively.

A so-called condensed sparse optimization solver is currently under development with the goal
of increasing adoption of GPUs. It uses a so-called condensed linear algebra KKT formulation (see
Section A.0.1), specialized sparse matrix device and host kernels, Cholesky-based linear solves on
the device, and a variation of the filter line-search interior-point algorithm currently implemented
by HiOp. The variation of the algorithm is choosen to improve the numerical conditioning of
the linear systems. As a result, the following options need to be used with the condensed sparse
optimization solver:

1 KKTLinsys condensed

2 compute_mode hybrid

3 linsol_mode speculative

4 fixed_var relax

5

6 tau_min 0 .9
7 theta_mu 1 .1
8 kappa_mu 0 .8
9

10 elastic_mode correct_it_adjust_bound

11 elastic_mode_bound_relax_final 1e=10
12 elastic_mode_bound_relax_initial 0 .01
13 elastic_bound_strategy mu_projected

14

15 fact_acceptor inertia_free

3.3 NLPs in the mixed dense-sparse (MDS) form

A second class of optimization problems supported by HiOp consists of nonlinear, possibly non-
convex optimization problems that explicitly partition the optimization variables into so-called
“dense” and “sparse” variables, xd and xs, respectively; this problem can be expressed compactly

15

as

min
xd∈Rnd ,xs∈Rns

f(xd, xs) (12)

s.t. c(xd, xs) = cE , (13)

dl ≤ d(xd, xs) ≤ du, (14)

xld ≤ xd ≤ xud , xls ≤ xs ≤ xus . (15)

Here f : Rn → R, c : Rn → RmE , and d : Rn → RmI , where n denotes the total number of
variables, n = nd + ns. The bounds appearing in the inequality constraints (14) are assumed
to be dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of one of dli and dui are
finite for each i ∈ {1, . . . ,mI}. The vector bounds xld, x

u
d , x

l
s, and xus in (15) need to satisfy

identical requirements. For the rest of the paper m will denote mE +mI , i.e., the total number
of constraints excepting the simple bounds constraints (15).

The salient idea behind mixed dense-sparse problems of the form (12)-(15) is that the explicit
partitioning of the optimization variables and a couple of (block) structural properties of the
functions f(·), c(·), and d(·), which are elaborated below, allow orchestrating the computations
of the optimization algorithm to heavily rely on matrix and vector dense kernels and to reduce
the reliance on sparse linear algebra kernels.

As mentioned above we make a couple of assumptions on the block structure of the derivatives:

A1. The “cross-term” Hessian matrices ∇2
xdxs

f , ∇2
xsxd

f , ∇2
xdxs

c, ∇2
xsxd

c, ∇2
xdxs

d, and ∇2
xsxd

d
are zero;

A2. The Hessian matrix ∇2
xsxs

L has a sparsity pattern that allows computationally efficient
inversion of (or solving with) the matrix ∇2

xsxs
L+Dxs where Dxs is a diagonal matrix with

positive diagonal entries; in our target applications, namely, optimal power flow problems,
∇2

xsxs
L is a diagonal matrix with nonnegative entries.

The optimization problem (12)–(15) is transformed internally by HiOp to an equivalent form
that is more amenable to the use of interior-point methods as described on [4, Section 3]. Further-
more, HiOp implements the filter line-search interior-point algorithm of Wächter and Biegler [6, 5]
(also implemented by IPOPT [7]) and makes explicit use of second-order derivatives/Hessians.

HiOp offers support for NVIDIA GPU acceleration. This feature is available only when solving
NLPs in the mixed dense-sparse (MDS) form and should be enabled during the build by using
-DHIOP USE GPU option with cmake. HiOp’s cmake build system is quite versatile to find the de-
pendencies required to offload computations to the device GPUs since was developed and tested
on a few GPU-enabled HPC platforms at Oak Ridge, Lawrence Livermore, and Pacific Northwest-
ern National Laboratories. These dependencies consist of CUDA library and Magma linear solver
library. The Newton interior-point solver for MDS problems offers the possibility to perform the
linear algebra and the great majority of the optimization computations on the device; this can
be achieved by setting option compute mode to gpu and the option mem space to device. This
combination of the two options will require the problem evaluation functions implemented by the
user (see Section 3.3.1 below) to run on the device. If the user code does not support this, then
HiOp should be used with compute mode set to hybrid and the option mem space set to default;
this combination will offload the majority of linear algebra and optimization computations to the
device. The HiOp’s RAJA version of Example 1 (see src/Drivers/NlpMdsEx1RajaDriver.cpp)
provides an example of implementing a MDS NLP so that it that can be solved by running HiOp’s
Newton solver on the device (i.e., compute mode set to gpu and with mem space set to device).

16

We note that MDS NLPs have no support for coarse grain (interprocess/internode) parallelism.

The following quantities are required by HiOp:

D1 objective and constraint functions f(xd, xs), c(xd, xs), d(xd, xs);

D2 the first-order derivatives: ∇f(xd, xs), Jc(xd, xs), Jd(xd, xs); the two Jacobians will have a
MDS structure in the sense that the left blocks will be dense while the right blocks will be
sparse in their expressions

Jc(xd, xs) =
[
Jxd

c(xd, xs) Jxsc(xd, xs)
]

(16)

and

Jd(xd, xs) =
[
Jxd

d(xd, xs) Jxsd(xd, xs)
]
. (17)

HiOp does not track MDS structure within the gradient ∇f(xd, xs) and treats it as an
unstructured vector.

D3 the second-order derivatives in the form of the Hessian of the Lagrangian

∇2L(xd, xs) = λ0∇2f(xd, xs) +

mE∑
i=1

λE
i ∇2ci(xd, xs) +

mI∑
i=1

λI
i∇2di(xd, xs). (18)

We remark that ∇2L(xd, xs) has a so-called MDS structure in the sense that ∇2
x2
d
L(xd, xs)

is dense, ∇2
x2
s
L(xd, xs) is sparse, and ∇2

xdxs
L(xd, xs) and ∇2

xsxd
L(xd, xs) are zero; this is a

consequence of the assumptions A1 and A2 above,

D4 the simple bounds xl and xu, the inequalities bounds: dl and du, and the right-hand size of
the equality constraints cE .

3.3.1 The C++ interface

The above optimization problem (12)–(15) can be specified by using the C++ interface, namely
by deriving and providing an implementation for the hiop::hiopInterfaceMDS abstract class.

We present next the methods of this abstract class that needs to be implemented in order
to specify the parts D1-D4 of the optimization problem. All the methods of this section are
“pure” virtual in hiop::hiopInterfaceMDS abstract class and need to be provided by the user
implementation.

"Note: Unless stated otherwise, all the functions that return bool should return false when
an error occurs, otherwise should return true.

"Note: Regarding the implementation of hiop::hiopInterfaceMDS on the device, all pointers
marked as “managed by Umpire” are allocated by HiOp using the Umpire’s API. They all are
addressed in the same memory space; however, the memory space can be host (typically CPU),
device (typically GPU), or unified memory (um) spaces as per Umpire specification. The selection
of the memory space is done via the option “mem space” of HiOp. It is the responsibility of the
implementers of the HiOp’s interfaces to work with the “managed by Umpire” pointers in the
same memory space as the one specified by the “mem space” option.

1 bool get_prob_sizes (size_type& n , size_type& m) ;

17

Provides the number of decision variables and the number of constraints (m = mE +mI).

1 bool get_vars_info (const size_type& n , double *xlow , double * xupp ,
2 NonlinearityType* type) ;

Provides the lower and upper bounds xl and xu on the decision variables. When a variable (let
us say the ith) has no lower or/and upper bounds, the ith entry of xlow and/or xupp should be
less than −120 or/and larger than 120, respectively. The last argument is not used and can set
to any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType. While
array type is allocated on host, arrays xlow and xupp are managed by Umpire.

1 bool get_cons_info (const size_type& m , double * clow , double * cupp ,
2 NonlinearityType* type) ;

Similar to the above, but for the inequality bounds dl and du. For equalities, set the corresponding
entries in clow and cupp equal to the desired value (from cE). While array type is allocated on
host, arrays clow and cupp are managed by Umpire.

1 bool get_sparse_dense_blocks_info (i n t& nx_sparse , i n t& nx_dense ,
2 i n t& nnz_sparse_Jaceq ,
3 i n t& nnz_sparse_Jacineq ,
4 i n t& nnz_sparse_Hess_Lagr_SS ,
5 i n t& nnz_sparse_Hess_Lagr_SD) ;

Specifies the number of nonzero elements in the sparse blocks of the Jacobians of the constraints
and of the Hessian of the Lagrangian, see (17) and (18), respectively. The last parameter
nnz sparse Hess Lagr SD is not used momentarily and should be set to zero.

1 bool eval_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double& obj_value) ;

Implement this method to compute the function value f(x) in obj value for the provided decision
variables x. The input argument new x specifies whether the variables x have been changed since
the previous call of one of the eval methods. Use this argument to “buffer” the objective and
gradients function and derivative evaluations when this is possible. Array x is managed by Umpire.

1 bool eval_grad_f (const size_type& n ,
2 const double * x , bool new_x ,
3 double * gradf) ;

Same as above but for ∇f(x). Arrays x and gradf are managed by Umpire.

1 bool eval_cons (const size_type& n , const size_type& m ,
2 const size_type& num_cons ,
3 const index_type* idx_cons , const double * x ,
4 bool new_x , double * cons) ;

Implement this method to provide the value of the constraints c(x) and/or d(x). The input
parameter num cons specifies how many constraints (out of m) needs to evaluated; idx cons array

18

specifies the indexes, which are zero-based, of the constraints and is of size num cons. These
values should be provided in cons, which is also an array of size num cons. Arrays idx cons, x
and cons are managed by Umpire.

1 eval_Jac_cons (const size_type& n , const size_type& m ,
2 const size_type& num_cons , const index_type* idx_cons ,
3 const double * x , bool new_x ,
4 const size_type& nsparse , const size_type& ndense ,
5 const size_type& nnzJacS ,
6 index_type* iJacS , index_type* jJacS , double * MJacS ,
7 double * JacD) ;

Evaluates the Jacobian of constraints split in the sparse (triplet format) and dense submatrices
(row-wise contiguous memory storage). The methods is called by HiOp twice once for equalities
and once for inequalities and passes during each of these calls the idx cons array of the indexes
of equalities and inequalities in the whole body of constraints.

It is advantageous to provide this method when the underlying NLP’s constraints come natu-
rally split in equalities and inequalities. When this is not convenient to do so, use eval Jac cons

below.
Parameters:

� first six: see eval cons.

� nnzJacS, iJacS, jJacS, MJacS are for number of nonzeros, (i, j) indexes, and nonzero values
of the sparse Jacobian.

� JacD should contain the Jacobian with respect to the dense variables of the MDS problem.
The array should store this Jacobian submatrix row-wise, meaning that the each row of the
Jacobian is contiguous in memory and starts right after the previous row.

"Note: Arrays idx cons, x, iJacS, jJacS, MJacS and JacD are managed by Umpire.

"Note: When implementing this method one should be aware that:

1. JacD parameter will be always non-null

2. When iJacS and jJacS are non-null, the implementer should provide the (i, j) indexes in
these arrays.

3. When MJacS is non-null, the implementer should provide the values corresponding to entries
specified by iJacS and jJacS.

4. iJacS and jJacS are both either non-null or null during a call.

5. The pair (iJacS, jJacS) and MJacS can be both non-null during the same call or only one
of them non-null; but they will not be both null.

1 bool eval_Jac_cons (const size_type& n , const size_type& m ,
2 const double * x , bool new_x ,
3 const size_type& nsparse , const size_type& ndense ,
4 const size_type& nnzJacS ,
5 index_type* iJacS , index_type* jJacS , double * MJacS ,
6 double * JacD) ;

19

Evaluates the Jacobian of equality and inequality constraints in one call. This Jacobian is mixed
dense-sparse (MDS), which means is structurally split in the sparse (triplet format) and dense
matrices (contiguous rows storage)

"Note: HiOp will call this method whenever the implementer/user returns false from the
previous, two-calls eval Jac cons; we remark that this method should return false during both
calls (for equalities and inequalities) made to it by HiOp.

The main difference from the above eval Jac cons is that the implementer/user of this
method does not have to split the constraints into equalities and inequalities; instead, HiOp
does this internally.

Parameters:

� first four: number of variables, number of constraints, (primal) variables at which the Jaco-
bian should be evaluated, and boolean flag indicating whether the variables x have changed
since a previous call to any of the function and derivative evaluations.

� nsparse and ndense: number of sparse and dense variables, respectively, adding up to n.

� nnzJacS, iJacS, jJacS, MJacS: number of nonzeros, (i, j) indexes, and nonzero values of
the sparse Jacobian block; these indexes are within the sparse Jacobian block (not within
the entire Jacobian).

� JacD: dense Jacobian block as a contiguous array storing the matrix by rows.

"Note: Arrays x, iJacS, jJacS, MJacS and JacD are managed by Umpire.

"Note: Notes 1-5 from the previous, two-call eval Jac cons applies here as well.

1 bool eval_Hess_Lagr (const size_type& n , const size_type& m ,
2 const double * x , bool new_x , const double& obj_factor ,
3 const double * lambda , bool new_lambda ,
4 const size_type& nsparse , const size_type& ndense ,
5 const size_type& nnzHSS ,
6 index_type* iHSS , index_type* jHSS , double * MHSS ,
7 double * HDD ,
8 size_type& nnzHSD , index_type* iHSD , index_type* jHSD ,
9 double * MHSD) ;

Evaluates the Hessian of the Lagrangian function in three structural blocks given by the MDS
structure of the problem. The arguments nnzHSS, iHSS, jHSS, and MHSS hold∇2L(xs, xs) from (18).
The argument HDD stores ∇2L(xd, xd) from (18).

"Note: The last four arguments, which are supposed to store the cross-Hessian ∇2L(xs, xd)
from (18), are for now assumed to hold a zero matrix. The implementer should return nnzHSD=0

during the first call to eval Hess Lagr. On subsequent calls, HiOp will pass the sparse triplet HSD
arrays set to NULL and the implementer (obviously) should not use them.

"Note: Notes 1-5 from eval Jac cons apply to arrays iHSS, jHSS, and MHSS storing the sparse
part of the Hessian as well as to the HDD array storing the dense block of the Hessian.

"Note: The rule of thumb is that when specifying symmetric matrices to HiOp, only the
upper triangle elements should be specified by the user. The rule applies both to sparse and
dense matrices. More info on HiOp’s conventions on matrices storage can be found at https:

//github.com/LLNL/hiop/tree/develop/src/LinAlg.

20

https://github.com/LLNL/hiop/tree/develop/src/LinAlg
https://github.com/LLNL/hiop/tree/develop/src/LinAlg

"Note: The array lambda contains the multipliers of constraints. These multipliers come have
the same order as the constraints in eval cons (this is a new behavior introduced in HiOp v0.4).

"Note: Arrays x, lambda, iHSS, jHSS, MHSS, HDD, iHSD, jHSD and MHSD are managed by
Umpire.

"Device computations: HiOp supports full device/GPU acceleration for MDS NLPs. To
achieve this, the user can use option compute mode set to gpu and option mem space set to device.
However, the user needs to be able to evaluate the model on the device. The rule of thumb is
that all the pointer arguments of the callback methods of this section will be on the device (with
a few exceptions) so that the user can populate the arrays on the device. This is illustrated and
discussed in detail in src/Drivers/NlpMdsRajaEx1.hpp, which is part of the RAJA Example
1 (see src/Drivers/NlpMdsEx1RajaDriver.cpp) that is capable of running completely in the
device memory space with minimal host-device transfer.

3.3.2 Calling HiOp for a hiopInterfaceMDS formulation

Once an implementation of the hiop::hiopInterfaceMDS abstract interface class containing the
user’s NLP representation is available, the user code needs to create a HiOp problem formulation
that encapsulate the NLP representation, instantiate an optimization algorithm class, and start
the numerical optimization process.

A detailed, self-contained example can be found in src/Drivers/ directory in NlpMdsEx1Driver.cpp
files for an illustration of aforementioned sequence of steps. A synposis of HiOp code that solves
and MDS NLP implemented presumably in a class MdsEx1 (implemented in NlpMdsFormEx1.hpp)
derived from hiop::hiopInterfaceMDS is as follows:

1 #inc lude ”NlpMdsFormEx1 . hpp” // the NLP r ep r e s en t a t i on c l a s s
2 #inc lude ” h i op In t e r f a c e . hpp” //HiOP encapsu la t i on o f the NLP
3 #inc lude ”hiopAlgFi lterIPM . hpp” // s o l v e r c l a s s
4 us ing namespace hiop ;
5 . . .
6 MdsEx1* my_nlp = new MdsEx1 (n_sp , n_de) ; // i n s t a n t i a t e your NLP r ep r e s en t a t i on ←↩

c l a s s
7 hiopNlpMDS nlp (* my_nlp) ; // c r e a t e HiOP encapsu la t i on
8 nlp . options=>SetStringValue (”Hess ian ” , ” a n a l y t i c a l e x a c t ”) ;
9 nlp . options=>SetNumericValue (”mu0” , 0 . 01) ; // s e t i n i t i a l va lue f o r b a r r i e r ←↩

parameter
10 hiopAlgFilterIPMNewton solver(&nlp) ; // c r e a t e a s o l v e r ob j e c t
11 hiopSolveStatus status = solver . run () ; // numerica l opt imiza t i on
12 double obj_value = solver . getObjective () ; // get ob j e c t i v e
13 . . .

21

3.4 Structured NLPs suitable to primal decomposition (PriDec) schemes

Starting v0.5, HiOp also offers parallel computing capabilities via the PriDec solver for NLPs with
separable objective terms in the form of:

min
x∈Rn

f(x) +

K∑
i=1

ri(x) (19)

s.t. c(x) = cE , [yc] (20)

[vl] dl ≤ d(x) ≤ du, [vu] (21)

[zu] xl ≤ x ≤ xu. [zu] (22)

Mathematically, the above problem is identical (and has the same specification) to the NLP (1)-
(4), with the exception of the so-called “recourse” terms ri(x) appearing in the objective. Each of
these functions are real-valued, ri : Rn → R, for all i ∈ {1, 2, . . . ,K}, and can be of various order
of differentiability. As of now, the recourse functions ri(x) need to be Lipschitz continuous and
continuously differentiable. It is also possible for ri(x) to be Lipschitz and only weakly concave
(with convergence guarantees). The users are encouraged to contact HiOp developers for the latest
developements in this area. A compact description of the algorithm implemented by PriDec can
be found in [8] (the technical report version is available doc/ directory).

The input in which HiOp expects for this class of problems is a bit different than for NLPs
of the form (1)-(4) and MDS NLPs introduced in the previous sections. This is mainly caused
by the specifics of the primal decomposition algorithm/solver that was purposedly developed
to solve (19)-(22) for large K (e.g., K = O(106)) efficiently on a massively parallel computing
platform. Nevertheless, for smaller K, problems of form (19)-(22) can be solved with HiOp using
the sparse and MDS input interfaces.

The primal decomposition algorithm requires a separation or breakdown of the evaluation
of (19)-(22) into the following computational “units”.

1. solving the so-called “master problem” of the form

min
x∈Rn

f(x) + q(x) (23)

s.t. c(x) = cE [yc] (24)

[vl] dl ≤ d(x) ≤ du [vu] (25)

[zu] xl ≤ x ≤ xu [zu] (26)

for a real function q(x) constructed by HiOp PriDec solver, which serves as an approximation
to

∑K
i=1 ri(x). The evaluation of q(x), its gradient and sparse Hessian are provided by HiOp

PriDec solver based on the function values and graidents of ri(x); The master problem is
implemented based on the basecase problem

min
x∈Rn

f(x) (27)

s.t. c(x) = cE [yc] (28)

[vl] dl ≤ d(x) ≤ du [vu] (29)

[zu] xl ≤ x ≤ xu [zu] (30)

where no recourse functions exist. To determine whether q(x) is included in the objec-
tive, a boolean variable is used. The basecase problem class also contains a hiopInter-
facePriDecProblem::RecourseApproxEvaluator object, that stores and updates the function

22

q(x). The PriDec solver constructs q(x) at each iteration and then passes it on to the base-
case problem so that the full problem (23)-(26) can be solved. In other words, the user does
not need to provide q(x) in their objective, but needs to write the basecase problem (27)-(30)
such that its objective (or potentially constraint in the future) can be extended.

2. evaluating the recourse functions ri(x) and their (sub)gradients∇ri(x), for all i ∈ {1, 2, . . . ,K}.
If there is no analytical form for ri(x), as in the case of two-stage problems, the user might
need to implement and solve a second-stage optimization problem. Nevertheless, HiOp

PriDec solver expects to be returned a function value and a (sub)gradient at a given x.

To streamline steps 1 and 2 above, the master problem is implemented with the class hiopInter-
facePriDecProblem, which has methods for solving the master problem and evaluating recourse
functions. We stress that it is the user’s responsibility to implement steps 1 and 2 above. In
regards to 1, the function q(x) is an approximation to the recourse R(x) :=

∑K
i=1 ri(x) from (23)-

(26), which is built based on the function and gradient evaluations of ri(x), computed at step
2.

The user can safely assume that q(x) is a strictly convex quadratic function (however the
function may be only convex and nonquadratic in a future version of HiOp). HiOp assumes that
the user can solve the master problem (23)-(26) in some efficient way and that the user can return
the optimal solution vector. In the examples given, the master problem is setup and solved with
HiOp.

Self-contained examples of the use of HiOp’s PriDec solver are present in NlpPriDecEx1 and
NlpPriDecEx2 examples under the Drivers directory.

3.5 Specifying a starting point for the optimization process

The user can provide an initial primal or primal-dual point implementing the method get starting point

of the NLP specification interfaces hiopInterfaceDenseConstraints or hiopInterfaceMDS.

1 bool get_starting_point (const size_type& n , const size_type& m ,
2 double * x0 ,
3 bool& duals_avail ,
4 double * z_bndL0 , double * z_bndU0 ,
5 double * lambda0 ,
6 bool& slacks_avail ,
7 double * ineq_slack) ;

A second method is offered to user to provide an initial primal starting point. This method
will be soon deprecated as its functionality is a subset of the method above and should be avoided.

1 bool get_starting_point (const size_type& n , double * x0) ;

Parameters:

� n and m are the number of variables and the number of constraints.

� x0 array of values for the initial primal variables/starting point.

� duals avail boolean flag expressing whether the user wishes to specifiy the a starting point
for dual variables.

23

� z bndL0 and z bndU0 starting points for the duals of the lower and upper bounds.

� lambda0 is an array containing the starting point for the duals of the constraints. It is allo-
cated to have the dimension of the constraints body and the entries in lambda0 should have
the same order as the constraints body (that is equalities may be mixed with inequalities),
see eval cons methods; HiOp keeps track internally whether each value in lambda0 is a
multiplier for an equality or for an inequlity constraint.

� slacks avail boolean flag expressing whether the initial values for the inequality slacks
(added by HiOp internally) are given by the user.

� ineq slack is an array containing the starting point for the slacks added by HiOp to transfer
inequalities to equalities internally.

These methods should return true if the user successfully provided starting values for the
primal or for the primal and dual variables. If the first method above returns false, then HiOp

will attempt calling the second method above. This behavior is for backward compatibility. If
a starting point cannot be set by the user, both methods should return false. Also, we remark
that the methods do not need to be implemented since default implementations returning false

are provided by the base class; in this case, HiOp will use a starting point of all zeros (which is
subjected to internal adjustments, see below).

"Note: Arrays x0, z bndL0, z bndU0, lambda0 and ineq slack are managed by Umpire.

"Note: The starting point returned by the user in x0 using the methods above is subject
to internal adjustments in HiOp and may differ from x0 with which the methods of the previous
section are first called.

A third method to initialize the point is offered to advanced users, as it will skip all the
safeguards in HiOp, e.g., checking if it is ‘nullptr‘ or project x into variable bounds.

1 bool get_warmstart_point (const size_type& n , const size_type& m ,
2 double * x0 ,
3 double * z_bndL0 , double * z_bndU0 ,
4 double * lambda0 ,
5 double * ineq_slack ,
6 double * vl0 , double * vu0) ;

Parameters:

� n and m are the number of variables and the number of constraints.

� x0 array of values for the initial primal variables/starting point.

� z bndL0 and z bndU0 starting points for the duals of the lower and upper bounds.

� lambda0 is an array containing the starting point for the duals of the constraints. It is allo-
cated to have the dimension of the constraints body and the entries in lambda0 should have
the same order as the constraints body (that is equalities may be mixed with inequalities),
see eval cons methods; HiOp keeps track internally whether each value in lambda0 is a
multiplier for an equality or for an inequlity constraint.

� ineq slack is an array containing the starting point for the slacks added by HiOp to transfer
inequalities to equalities internally.

24

� vl0 and vu0 starting points for the duals of the (inequality) constraints lower and upper
bounds.

This method should only be implemented when user wants to use a warmstart point and
should be used with caution.

"Note: Arrays x0, z bndL0, z bndU0, lambda0, ineq slack, vl0 and vu0 are managed by
Umpire.

3.6 Obtain information from HiOp

HiOp provides two callback functions for the user to obtain information about the optimization
status.

1 void solution_callback (hiopSolveStatus status ,
2 size_type n ,
3 const double * x ,
4 const double * z_L ,
5 const double * z_U ,
6 size_type m ,
7 const double * g ,
8 const double * lambda ,
9 double obj_value) ;

Callback method called by HiOp when the optimal solution is reached. User can use it to retrieve
primal-dual optimal solution.

Parameters:

� status status of the solution process.

� n global number of variables.

� x array of (local) entries of the primal variables at solution.

� z L array of (local) entries of the dual variables for lower bounds at solution.

� z U array of (local) entries of the dual variables for upper bounds at solution.

� g array of the values of the constraints body at solution.

� lambda array of (local) entries of the dual variables for constraints at solution.

� obj value objective value at solution

"Note: Arrays x, z L, z U, g and lambda are managed by Umpire.

1 bool iterate_callback (i n t iter ,
2 double obj_value ,
3 double logbar_obj_value ,
4 i n t n ,
5 const double * x ,
6 const double * z_L ,
7 const double * z_U ,
8 i n t m_ineq ,

25

9 const double * s ,
10 i n t m ,
11 const double * g ,
12 const double * lambda ,
13 double inf_pr ,
14 double inf_du ,
15 double onenorm_pr ,
16 double mu ,
17 double alpha_du ,
18 double alpha_pr ,
19 i n t ls_trials) ;

Intermediate callback method called by HiOp at the end of each iteration. User can obtain infor-
mation about the optimization status while HiOp solves the problem. If the user (implementer) of
this methods returns false, HiOp will stop the optimization with hiop::hiopSolveStatus::User Stopped

return code. Parameters:

� iter the current iteration number

� obj value objective value

� logbar obj value log barrier objective value

� n global number of variables

� x array of (local) entries of the primal variables (managed by Umpire, see note below)

� z L array of (local) entries of the dual variables for lower bounds (managed by Umpire, see
note below)

� z U array of (local) entries of the dual variables for upper bounds (managed by Umpire, see
note below)

� m ineq the number of inequality constraints

� s array of the slacks added to transfer inequalities to equalities (managed by Umpire, see
note below)

� m the number of constraints

� g array of the values of the constraints body (managed by Umpire, see note below)

� lambda array of (local) entries of the dual variables for constraints (managed by Umpire,
see note below)

� inf pr inf norm of the primal infeasibilities

� inf du inf norm of the dual infeasibilities

� onenorm pr one norm of the primal infeasibilities

� mu the log barrier parameter

� alpha du dual step size

� alpha pr primal step size

26

� ls trials the number of line search iterations

"Note: Arrays x, z L, z U, s, g and lambda are managed by Umpire.

"Note: HiOp’s option callback mem space can be used to change the memory location of
array parameters managaged by Umpire. More specifically, when callback mem space is set to
‘host‘ (and mem space is ‘device‘), HiOp transfers the arrays from device to host first, and then
returns pointers on host whose data is managed by Umpire. These pointers can be then used in
host memory space (without the need to rely on or use Umpire).

3.7 Compiling and linking your project with the HiOp library

HiOp’s build system offers HiOp as a static library. For a straightforward integration of HiOp in
the user’s project, one needs to

� append to the compiler’s include path the location of the HiOP’s headers:

-Ihiop-dir/include

� specify libhiop.a to the linker, possibly adding the HiOP’s library directory to the linker’s
libraries paths:

-Lhiop-dir/lib -lhiop

Here, hiop-dir is the HiOp’s distribution directory (created using HiOp’s build system, in partic-
ular by using make install command).

In addition, a shared dynamic load library can be also built by using HIOP BUILD SHARED

option with cmake.

4 Solver options

The user can control HiOp’s options in two ways:

� via the options file(s) that should be placed in the same directory where the application
driver using HiOp is executed. The format of an option file is very basic, each of its lines
should contain a single pair option name option value. Lines that begin with ’#’ or
consist of only white characters are discarded. The option value is checked to have the
correct type (numeric, integer, or string) and to be in the expected range. If the checks fail,
then the option is set to the default value and a warning message is displayed.

� at runtime via the HiOp’s API using the options member of the various NLP formulation
and PriDec solver classes. The options object has three methods that allows the user to set
options based on their types:

1 bool SetNumericValue (const char * name , const double& value) ;
2 bool SetIntegerValue (const char * name , const i n t& value) ;
3 bool SetStringValue (const char * name , const char * value) ;

27

" Each option i. should be of one of types numeric/double, integer, and string; ii. has a value
associated; iii. may have a range of values; and, iv. has a default value.

The NLP solvers load options from the file hiop.options. The PriDec solver will look for
and load options from up to three files:

� hiop pridec.options specifies options for the PriDec algorithm/solver

� hiop pridec master.options specifies options for the NLP solver used to solve the master
problem. This master NLP solver does not necessarily have to be one of HiOp’s NLP solvers.
The name of this file can be controlled via the string option options file master prob of
the PriDec solver, in hiop pridec.options.

� hiop.options specifies the options for the worker NLP solver. This applies only when the
worker NLP solver is one of the HiOp’s solvers. This file will not be used by worker solvers
other than HiOp; they will use their default option files.

For example, when the PriDec solver is used with HiOp’s NLP solvers for both the master
and the worker subproblems, the user should create the three options files above to customize
the PriDec, master, and worker solvers. As another example, when Ipopt is used for both master
and worker subproblems, the user should use the default “ipopt.opt“ file for the worker and use
“hiop pridec master.options” for Ipopt options for the master subproblem (or, if another file needs
to be used, change the name of the master options file via options file master prob in PriDec’s
hiop pridec.options option file).

If HiOp needs to solve a feasibility problem internally, it treats the feasibility problem as a
new optimization problem and launchs a standalone internal process to solve the problem. The
file, hiop fr.options, can be used to control the options for solving the feasibility problem by
HiOp. The name of this option file can be tuned by parameter ‘options file fr prob’.

"Note: If an option file is not present, HiOp will use default values (unless the user changes
the options at runtime via the API).

"Note: Options set in the options files overwrite options set at runtime via the above API.

4.1 Options for NLP solvers

4.1.1 Termination criteria and output

acceptable iterations: number of iterations passing the acceptable tolerance (see accept-
able tolerance) after which HiOp terminates. Integer values between 1 and 106. Default value:
10.

acceptable tolerance: HiOp will terminate if the inf-norm of the NLP optimality residuals
is below this value for acceptable iterations many consecutive iterations. Double values in
[10−14, 0.1]. Default value: 10−6.

max iter: maximum number of iterations. Integer values between 1 to 106. Default value: 3000.

rel tolerance: error tolerance for the NLP relative to errors at the initial point. A null value
disables this option. Double values in [0, 0.1]. Default value: 0.

tolerance: maximum (absolute) NLP optimality error allowed at the optimal solution. Double
values in [10−14, 0.1]. Default value: 10−8.

28

max soc iter: maximum number of iterations in second order correction. Integer values between
1 to 106. Default value: 4.

4.1.2 Filter-IPM algorithm selection and parameters

mu0: initial log-barrier parameter mu. Double values in [10−16, 103]. Default value: 1.0.

kappa eps: µ is reduced when when log-barrier error is below kappa eps × µ. Double values in
[10−6, 1000]. Default value: 10.

kappa mu: linear reduction coefficient for µ (eqn. (7) in [7]). Double values in [10−8, 0.999].
Default value: 0.2.

kappa1: sufficiently-away-from-the-boundary projection parameter used in the shift of the user-
provided initial point. Double values in [10−16, 0.1]. Default value: 0.01.

kappa2: shift projection parameter used in initialization for doubly bounded variables. Double
values in [10−15, 0.49999]. Default value: 0.01.

theta mu: exponential reduction coefficient for µ (eqn. (7) in [7]). Double values in [1, 2].
Default value: 1.5.

eta phi: parameter of (suff. decrease) in Armijo Rule. Double values in [0, 0.01]. Default value:
10−8.

smax: the primal-dual IPM equations are rescaled when the average value of the is larger than
this threshold value. Double values in [1, 107]. Default value: 100.

Hessian: type of Hessian used with the filter IPM.

� “quasinewton approx” (default) - HiOp will build secant BFGS approximation for the Hes-
sian and use a quasi-Newton filter IPM;

� “analytical exact” - Hessian provided by the user and a Newton filter IPM algorithm will
be used.

sigma0: initial value of the initial multiplier of the identity in the secant approximation. Numeric
values in [0, 107]. Default value: 1.

sigma update strategy: string option specifying the updating strategy for the multiplier of the
identity in the secant approximation. Possible values are “sigma0”, “sty”, “ sty inv”, “snrm ynrm”
and “sty srnm ynrm”. Default value: is “sty”.

secant memory len: size of the memory (number of (s, y) pairs) of the Hessian secant approx-
imation. Integer values between 0 and 256. Default value: 6.

kappa soc: factor to decrease the constraint violation in second order correction. Double values
in [0, 1020]. Default value: 0.99.

warm start: string option with “yes” or “no” values deciding whether HiOp uses warm start
from the user provided primal-dual point. Note that all the primal, dual and slack variables must
be provided. Default value: “no”.

29

4.1.3 Line search and step computation

fact acceptor: the criteria used to accept a factorization:

� “inertia correction” (default): the most stable approch which requires inertia information
provided by the given linear solvers (see parameter linear solver sparse);

� “inertia free”: apply inertia free method. This approch is typically used when the given
linear solver cannot provide inertia information.

neg curv test fact: apply curvature test to check if a factorization is acceptable. This is the
scaling factor used to determines if a direction is considered to have sufficiently positive curvature.
Only valid when parameter fact acceptor is set to inertia free. Double values in [0, 1020].
Default value: 10−11.

min step size: minimum step size allowed in line-search. If step size is less than this number,
feasibility restoration problem is activated. Double values in [0, 106]. Default value: 10−16.

theta max fact: maximum constraint violation (θmax) is scaled by this fact before using in the
fileter line-search algorithm. (eqn (21) in [7]). Double values in [0, 107]. Default value: 104.

theta min fact: minimum constraint violation (θmin) is scaled by this fact before using in the
fileter line-search algorithm. (eqn (21) in [7]). Double values in [0, 107]. Default value: 10−4.

tau min: fraction-to-the-boundary parameter used in the line-search to back-off from the bound-
ary (eqn. (8) in [7]). Double values in [0.9, 0.99999]. Default value: 0.99.

accept every trial stepduals: disable the line-search and take the close-to-boundary step.
String values: “no” (default) and “yes”.

duals init: type of the update for the initialization of Lagrange multipliers corresponding to
the equality constraints. Possible values one of the the strings “lsq” (least-square (LSQ) solve
initialization) and “zero” (multipliers are set identically to zero). Default value: is “lsq”.

duals lsq ini max: max inf-norm allowed for initial duals when computed with LSQ (see du-
als init); if norm is greater, the duals for the equality constraints will be set to zero. Double
values between 10−16 and 1010. Default value: 1000.

duals update type: string option specifying the type of update of the multipliers of the eq.
constraints after each iteration. Possible values are “lsq” (update based on a LSQ solve) and
“linear” (Newton update based on the dual steplength. When Hessian is “quasinewton approx”
the default value for this options is “lsq”. When “Hessian” is “analytical exact” the default value
is “linear”.

recalc lsq duals tol: threshold for inf-norm under which the LSQ computation of duals is used.
If the inf-norm of the duals of the equality constraints is larger than the value of this options,
these duals are set to zero. This options requires duals update type to be “lsq” (the option is
ignored otherwise). Double values in [0, 1010]. Default value: 10−6.

duals update type: string option specifying the type of update of the multipliers of the eq.
constraints after each iteration. Possible values are “lsq” (update based on a LSQ solve) and
“linear” (Newton update based on the dual steplength. When Hessian is “quasinewton approx”
the default value for this options is “lsq”. When Hessian is “analytical exact” the default value
is “linear”.

30

4.1.4 Feasibility restoration

force resto: string option with “yes” or “no” values deciding whether HiOp forces applying
feasibility restoration. Default value: “no”.

options file fr prob: string option indicates the name of the option file for the feasibility restora-
tion problem. Default value: “hiop fr ci.options”.

kappa resto: factor to decrease the constraint violation in feasibility restoration. Double values
in [0, 1]. Default value: 0.9.

4.1.5 Elastic mode

elastic mode: type of elastic mode used within HiOp:

� “none” (default): does not apply elastic mode;

� “tighten bound ”: tightens the bounds when µ changes.

� “correct it”: tightens the bounds, and corrects the slacks and slack duals when µ changes.

� “correct it adjust bound”: tightens the bounds, corrects the slacks and slack duals, and
adjusts the bounds again from the modified iterate when µ changes.

elastic bound strategy: Strategy used to tighen the bounds, when µ changes:

� “mu projected” (default): sets the new bound relax factor to
(µ−µtarget)/(µinit−µtarget) ∗ (bound relax perturb initial− bound relax perturb final)+
bound relax perturb final

� “mu scaled ”: sets the new bound relax factor to 0.995 ∗ µ

elastic mode bound relax final: the final/minimum bound relaxation factor in the elastic
mode. This value must be less or equal to elastic mode bound relax initial. If user provides elas-
tic mode bound relax final > elastic mode bound relax initial, HiOp will use the default values
for both parameters. Double values in [10−16, 0.1]. Default value: 10−12.

elastic mode bound relax initial: the initial bound relaxation factor in the elastic mode.
This value must be greater or equal to elastic mode bound relax final. If user provides elas-
tic mode bound relax final > elastic mode bound relax initial, HiOp will use the default values
for both parameters. Double values in [10−16, 0.1]. Default value: 10−2.

4.1.6 Regularization

delta 0 bar: first perturbation of the Hessian block for inertia correction. Double values in
[0, 1040]. Default value: 10−4.

delta c bar: factor for regularization for potentially rank-deficient Jacobian (δc = delta c bar∗
µκ
c). Double values in [10−20, 1040]. Default value: 10−8.

delta w max bar: largest perturbation of the Hessian block for inertia correction. Double values
in [10−40, 1040]. Default value: 1020.

31

delta w min bar: smallest perturbation of the Hessian block for inertia correction. Double
values in [0, 1000]. Default value: 10−20.

kappa c: exponent of µ when computing regularization for potentially rank-deficient Jacobian
(δc = delta c bar ∗ µκ

c). Double values in [0, 1040]. Default value: 0.25.

kappa w minus : factor to decrease the most recent successful perturbation for inertia correc-
tion. Double values in [10−20, 1]. Default value: 0.3333.

kappa w plus: factor to increase perturbation when it did not provide correct inertia correction
(not first iteration). Double values in [1, 1040]. Default value: 8.

kappa w plus bar: factor to increase perturbation when it did not provide correct inertia cor-
rection (first iteration when scale not known). Double values in [1, 1040]. Default value: 100.

delta w min bar: smallest perturbation of the Hessian block for inertia correction. Double
values in [0, 1000]. Default value: 10−20.

delta w min bar: smallest perturbation of the Hessian block for inertia correction. Double
values in [0, 1000]. Default value: 10−20.

regularization method: whether randomized method is used to compute regularizations.

� “standard” (default) - no randomized method is used. Regularization is computed as a scala
times an identiy matrix, i.e., δI.

� “randomized” - use randomized regularizations.

normaleqn regularization priority : when normal equation is used and the iterate matrix is
not p.d., updating dual regularization is more efficient than updating the primal ones. Only valid
when option KKTLinsys is set to normaleqn

� “primal first” - update primal regularizations to correct positive definiteness. If primal
regularization is larger than the value provided by option delta w max bar, HiOp will try
to increase dual regularitions.

� “dual first” (default) - update dual regularizations to correct positive definiteness. If dual
regularization is larger than the value provided by option delta w max bar, HiOp will try
to increase primal regularitions.

4.1.7 Solving internal linear systems

duals init linear solver sparse: string option specifying the sparse linear solver used to solve
the least-square problem in dual initialization (see duals init). Possible values are ‘auto”,
“ma57”, “pardiso”, “cusolver-lu”, “strumpack” or “ginkgo”. Default value: is “auto”.

linear solver sparse: string option specifying the sparse linear solver used to solve the sparse
KKT system. Possible values are “auto”, “ma57”, “pardiso”, “cusolver-lu”, “strumpack” or
“ginkgo”. Default value: is “auto”.

ir inner cusolver maxit: FGMRES maximum number of iterations. Integer values in [0, 1000].
Default value: 50.

32

ir inner cusolver restart: FGMRES restart value. Integer values in [0, 100]. Default value:
20.

ir inner cusolver tol : FGMRES tolerance. Double values in [10−16, 0.1]. Default value: 10−12.

ir outer maxit: max number of outer iterative refinement iterations. Setting this to 0 deacti-
vates the outer iterative refinement. Integer values in [0, 100]. Default value: 8.

ir outer tol factor: iterative refinement (IR) is applied if the inf-norm of the full KKT residual
is larger than min(µ ∗ ir outer tol factor, ir outer tol min). Double values in [10−20, 1]. Default
value: 0.01.

ir outer tol min: iterative refinement (IR) is applied if the inf-norm of the full KKT residual is
larger than min(µ∗ ir outer tol factor, ir outer tol min). Double values in [10−20, 1020]. Default
value: 10−6.

ir inner cusolver gs scheme: Gram-Schmidt orthogonalization version for FMGRES:

� “mgs ” (default): modified Gram-Schmidt

� “cgs2”: reorthogonalized classical Gram-Schmidt (three synchs)

� “mgs two synch”: two synch (stable) MGS

� “mgs pm”: post-modern MGS, two synchs

ginkgo exec : string option with “cuda”, “hip” or “reference” values selecting the hardware ar-
chitecture to run the Ginkgo linear solver on. Only valid when parameter linear solver sparse

is set to ginkgo. Default value: “reference”.

cusolver lu factorization : so far, only ‘klu’ option is available.

cusolver lu refactorization: numerical refactorization function after sparsity pattern of factors
is computed. ‘glu’ is and ‘rf’ is

� “glu ” (default): experimental approach

� “rf”: NVIDIA’s stable refactorization

linear solver sparse ordering: permutation to promote sparsity in the (Chol) factorization:

� “metis ”: based on a wrapper of METIS NodeND

� “symamd-eigen” (default): based on EIGEN implementation of approx. min. degree (AMD)
orderings in its symmetric form

� “symamd-cuda ”: based on CUDA implementation of AMD orderings in its symmetric form

� “symrcm ”: based on CUDA implementation of reverse Cuthill-McKee orderings in its
symmetric form

� “amd-ssparse ”: based on AMD from Suite Sparse library

� “colamd-ssparse ”: based on column AMD from Suite Sparse library

33

4.1.8 Linear algebra computational kernels

KKTLinsys: type of KKT linear system formulation used internally:

� “auto” (default): decided by HiOp based on the type of interface/NLP solved and “com-
pute mode” and “Hessian” options;

� “xycyd”: symmetric indefinite (less stable but smaller size);

� “xdycyd”: symmetric indefinite (more stable but larger size);

� “full”: unsymmetric suitable for LU solvers (experimental).

� “condensed”: symmetric condensed linear system that is suitable for sparse Cholesky solvers
(available when no eq. constraints are present). See Section A.0.1 for more information

� “normaleqn”: symmetric normal equation system that is suitable for sparse Cholesky solvers
(available when problem is LP or separable convex QP). See Section A.0.2 for more infor-
mation

The last five options are available only with option Hessian setting to analyticalExact.

linsol mode: for some problem classes and KKT linearizations, one can instruct HiOp to switch
between strategies for solving the IPM linear systems:

� “stable” (default): the most stable factorization is used;

� “speculative”: switch to faster linear solvers when is detected to be safe to do so. This is
available for MDS problems and can offer considerable speed-up for these problems. The
option is experimental and should be used only by advanced users;

� “forcequick” rely on fast solvers (experimental, avoid).

compute mode: offloading of computations to GPUs:

� “auto” (default): identical to “hybrid”;

� “cpu”: run everything on the CPU;

� “hybrid”: HiOp will decide internally based on the type of NLP problem solved and other
options which computational kernels will be offloaded to GPU. It usually runs the expensive
linear solves on GPU but the remaining computations on the host/CPU;

� “gpu”: run the all the computational kernels on the device; some computations (e.g., logic
and control loop) will run on CPU. It is fully tested with MDS NLPs; for other NLPs this
option is experimental, should be used only by advanced users (as of v0.5). This option
requires Umpire to be used as the memory manager with mem space option being set to
device or um.

mem space: determines the memory space in which future internal linear algebra objects will
be created. When HiOp is built with RAJA/Umpire, user can set this option to either ‘default’,
‘host’, ‘device’ or ‘um’, and internally the data of HiOp vectors/matrices will be managed by
Umpire. If HiOp was built without RAJA/Umpire support, only ‘default’ is available for this
option.:

34

� “default” (default): allocations are done by HiOp in the cpu’s memory space;

� “host”: allocations via Umpire in Umpire’s “HOST” memory space, typically CPU memory;

� “device”: allocations via Umpire in Umpire’s “DEVICE” device memory space; the option
is supported only for MDS NLPs and requires the user’s model evaluation on the device;

� “um”: allocations via Umpire’s unified memory model, known as “UM”.

callback mem space: determines the memory space to which HiOp will return the solutions.
When HiOp is built with RAJA/Umpire and optionmem space is set to ‘device’, user can set this
option to either ‘default’, ‘host’ or ‘device’. If HiOp was built without RAJA/Umpire support,
only ‘default’ is available for this option.:

� “default” (default): returns the solutions pointers on the cpu’s memory space;

� “host”: returns the solutions pointers allocated by Umpire in Umpire’s “HOST” memory
space, typically CPU memory;

� “device”: returns the solutions pointers allocated by Umpire in Umpire’s “DEVICE” device
memory space;

� “um”: returns the solutions pointers allocated by Umpire’s unified memory, known as “UM”.
Only available when mem space is set to ‘um’.

4.1.9 Problem preprocessing

fixed var: treatment of variables that are detected to be fixed (according to the tolerance specified
by “fixed var tolerance”):

� “none” (default): will not handle fixed variable and will exit with an error message if such
variable is encountered;

� “relax”: relax the fixed variables accordingly to “fixed var perturb” option below;

� “’remove”: remove variables from the (internal) NLP formulation.

fixed var tolerance: a variable (say the ith) is considered fixed if

|(xu)i − (xl)i| < fixed var tolerance×max(|(xu)i|, 1).

This option takes double values in [10−30, 10−2] and has a default value 10−15.

fixed var perturb: fixed variable perturbation of the lower and upper bounds for fixed variables
relative their magnitude. A variable (say the ith) (that is detected to be fixed) is “relaxed”
accordingly to

(xl)i = (xl)i −max(|(xu)i|, 1)× fixed var perturb,

(xu)i = (xu)i +max(|(xu)i|, 1)× fixed var perturb.

This option takes double values in [10−14, 0.1] and has a default value 10−8.

35

bound relax perturb: perturbation of the lower and upper bounds for all variables and all
constraints relative to their magnitude. A variable or constraint (say the ith) with lower and
upper bounds (xl)i and (xu)i, respectively, is “relaxed” accordingly to

(xl)i = (xl)i −max(|(xl)i|, 1)× bound relax perturb,

(xu)i = (xu)i +max(|(xu)i|, 1)× bound relax perturb.

This option takes double values in [0, 1020] and has a default value 10−8.

scaling type: scaling method for the user’s NLP

� “none” (default): perform no problem scaling;

� “gradient”: will scale the problem such that the inf-norm of gradient at the initial point is
less or equal to the value of “scaling max grad” option.

scaling max grad: the user’s NLP will be rescaled if the inf-norm of the gradient at the starting
point is larger than the value of this option. Double values in [10−20, 1020]. Default value: 100.

eq relax factor: perturbation of the equalities to allow posing them as inequalities. This factor
is relative to the maximum between the magnitude of the equalities rhs and 1.0. Used only by
‘hiopNlpSparseIneq’ formulation class. Double values in [10−15, 1]. Default value: 10−8.

4.1.10 Miscellaneous options

verbosity level: integer between 0 and 12 specifying the verbosity of HiOp’s output. A value of
0 disables any output (but still outputs fatal errors). A value of 1 also outputs warnings. The
value of 2 is reserved for future use. A value of 3 will also output a table with HiOp’s convergence
metrics at each iteration. A value of 4 and higher will display additional info related to the
internals of the algorithm and is generally used only for debugging/development purposes. Those
larger values are explained in hiopLogger.hpp. The higher the value the more verbose the output
will be.

print options: string option with “yes”, “no” or “short” values deciding whether the options
should be printed on the output before solver (re)starts. Setting this option to ‘yes’ prints all
the parameter names, values and descriptions, while ‘short’ only prints the parameter names and
values. Default value: “no”.

write kkt: string option with “yes” or “no” values deciding whether HiOp writes internal KKT
linear system (matrix, rhs, sol) to external files. Default value: “no”.

time kkt: string option with “on” or “off” values deciding whether HiOp turns on/off performance
timers and reporting of the computational constituents of the KKT solve process. Default value:
“off”.

4.2 Options for PriDec solver

Here we list the options that are recognized by the HiOp’s PriDec solver.

36

4.2.1 Termination criteria and output

tolerance: maximum (absolute) error allowed. This value is compared against the decrease of
the objective predicted by the solution to the subproblem with the approximation model (q(x)
in (23)). Double values in [10−14, 0.1]. Default value: 10−5.

max iter: maximum number of iterations. Integer values between 1 to 106. Default value: 3000.

acceptable tolerance: PriDec solver will terminate if the inf-norm of the decrease in objective
value is below this value for acceptable iterations many consecutive iterations. Double values
in [10−14, 0.1]. Default value: 10−3.

acceptable iterations: number of iterations passing the acceptable tolerance (see accept-
able tolerance) after which PriDec solver terminates. Integer values between 1 and 106. Default
value: 25.

verbosity level: integer between 0 and 12 specifying the verbosity of HiOp’s output. A value
of 0 disables any output (but still outputs fatal errors). A value of 1 outputs warnings. The
value of 2 is reserved for future use. A value of 3 will also output a table with PriDec solver’s
convergence metrics and trust-region type of measure of the quality of the approximation model
at each iteration. A value of 4 and higher will display additional info related to the internals of
the algorithm and is generally used only for debugging/development purposes. The higher the
value the more verbose the output will be.

4.2.2 Algorithm selection and parameters

alpha min: lower bound for the scalar quadratic coefficient in the approximation model of the
objective. It is a global value and has higher priority than the update rule of alpha. Double values
in [10−8, 103]. Default value: 10−5.

alpha max: upper bound for the scalar quadratic coefficient in the approximation model of the
objective. It is a global value and has higher priority than the update rule of alpha. Double
values in [1, 1014]. Default value: 106. An assert error will be reported if alpha min is bigger
than alpha max.

4.2.3 Miscellaneous options

mem space: specifies the primary memory space in which PriDec solver’s internal linear algebra
objects will be created:

� “default” (default): allocations are done by HiOp in the cpu’s memory space;

� “host”: allocations via Umpire in Umpire’s “HOST” memory space, typically CPU memory;

� “device”: allocations via Umpire in Umpire’s “DEVICE” device memory space;

� “um”: allocations via Umpire’s unified memory model, know as “UM”.

" The memory space for PriDec solver must match the memory space used by the master NLP
solver, otherwise undefined behaviour will occur. This consistency is not checked by HiOp since
it is impossible to do so when black-box NLP solvers are used for the master problem. It is the
user’s responsibility to ensure that the memory spaces match. When HiOp is used a master solver,

37

the PriDec solver’s mem space option must match the master HiOp’s option mem space. When
a CPU master solver is used with PriDec solver, the PriDec’s mem space option must be set to
“default”.

print options: string option with “yes” or “no” values deciding whether the options should be
printed on the output before solver (re)starts. Default value: “no”.

5 Licensing and copyright

HiOp is free software; you can modify it and/or redistribute it under the terms of the following
modified BSD 3-clause license:

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC.
Produced at the Lawrence Livermore National Laboratory (LLNL).
Written by Cosmin G. Petra, petra1@llnl.gov. LLNL-CODE-742473. All rights reserved.

HiOp is released under the BSD 3-clause license (https://github.com/LLNL/hiop/blob/master/LICENSE).
Please also read “Additional BSD Notice” below.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

i. Redistributions of source code must retain the above copyright notice, this list of conditions and
the disclaimer below.

ii. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with
the distribution.

iii. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy
(DOE). This work was produced at Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of
their employees, makes any warranty, express or implied, or assumes any liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.

38

6 Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. The author also acknowledges the
support from the LDRD Program of Lawrence Livermore National Laboratory under the projects
16-ERD-025 and 17-SI-005.

References

[1] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices and
their use in limited memory methods. Mathematical Programming, 63(1):129–156, 1994.

[2] N.-Y. Chiang and V. M. Zavala. An inertia-free filter line-search algorithm for large-scale
nonlinear programming. Computational Optimization and Applications, 64(2):327–354, 2016.

[3] C. G. Petra. A memory-distributed quasi-Newton solver for nonlinear programming problems
with a small number of general constraints. Technical Report LLNL-JRNL-739001, Lawrence
Livermore National Laboratory, October 2017.

[4] C. G. Petra. A memory-distributed quasi-newton solver for nonlinear programming problems
with a small number of general constraints. Journal of Parallel and Distributed Computing,
133:337–348, 2019.

[5] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Local
convergence. SIAM Journal on Optimization, 16(1):32–48, 2005.

[6] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Moti-
vation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.

[7] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2006.

[8] J. Wang, N. Chiang, and C. G. Petra. An asynchronous distributed-memory optimization
solver for two-stage stochastic programming problems. Technical report, LLNL-CONF-821097,
Lawrence Livermore National Laboratory, 2021.

39

A Appendix

A.0.1 Condensed Linear System

The condensed approach supports sparse NLPs with no equality constraints of the form

min
x∈Rn

f(x) (31)

[vl] dl ≤ d(x) ≤ du [vu] (32)

[zl] xl ≤ x ≤ xu [zu] (33)

Here f : Rn → R, d : Rn → RmI . The bounds appearing in the inequality constraints (32) are
assumed to be dl ∈ RmI ∪ {−∞}, du ∈ RmI ∪ {+∞}, dli < dui , and at least of one of dli and dui are
finite for all i ∈ {1, . . . ,mI}. The bounds in (33) are such that xl ∈ Rn∪{−∞}, xu ∈ Rn∪{+∞},
and xli < xui , i ∈ {1, . . . , n}. The quantities insides brackets are the Lagrange multipliers of the
constraints. Whenever a bound is infinite, the corresponding multiplier is by convention zero.
Internally, a slack variable s is introduced and the inequality constraints (32) are replaced by
additional equality constraints and bound constraints:

d(x) = s [yd] (34)

[vl] dl ≤ s ≤ du [vu] (35)

"Note: If equality constraints c(x) = cE are present, they will be slightly relaxed to inequal-
ities cE − C1 ≤ c(x) ≤ cE + C1, where C1 is a small positive perturbation that will be updated
by HiOp internally. Consequently, with the condensed linear algebra, HiOp solves problems with
equality constraints as inequality-only problems in the form of (31)-(33).

Using the notations from [3], the condensed linear system solves the most stable “xdycyd”
KKT linear system H +Dx + δwI 0 JT

d

0 Dd + δwI −I
Jd −I 0

∆x
∆d
∆yd

 =

 rx
rd
ryd

 (36)

by solving the following sequence of linear systems

Q := H +Dx + δwI + JT
d (Dd + δwI)Jd (37)

Q∆x = rx + JT
d (Dd + δwI)ryd + JT

d rd (38)

∆d = Jd∆x− ryd (39)

∆yd = Dd∆d− rd (40)

Equation (38) is referred to as the condensed linear system. HiOp ensures that the matrix Q is
positive definite by using a combination of dual and primal regularizations. Using the condensed
linear algebra is therefore capable of using sparse Cholesky solvers. This is particularly relevant
for GPU computations efficient and robust Cholesky solvers are currently more mature than an
indefinite linear solvers (required by the “xdycyd” linear system). Currently, HiOp has GPU
acceleration using cuSolverSP “cusolverSpDcsrlsvchol” from the NVIDIA’s CUDA Toolkit.

40

A.0.2 Normal Equation

The normal equation approach supports sparse LPs or QPs in the form of (5)-(8), where f :
Rn → R is a linear or a convex quadratic function with diagonal Hessian and c : Rn → RmE and
d : Rn → RmI are affine functions.

"Note: If equality constraints c(x) = cE are presented, they will be slightly relaxed to inequal-
ities cE − C1 ≤ c(x) ≤ cE + C1, where C1 is a small positive perturbation that will be updated
by HiOp internally. Consequently, with the condensed linear algebra, HiOp solves problems with
equality constraints as inequality-only problems in the form of (31)-(33).

Internally, normal equation solves the most stable ‘xdycyd’ KKT linear system
H +Dx + δwI 0 JT

c JT
d

0 Dd + δwI 0 −I
Jc 0 0 0
Jd −I 0 0



∆x
∆d
∆yc
∆yd

 =


rx
rd
ryc
ryd

 (41)

by solving the following linear system:

K

[
∆yc
∆yd

]
=

[
r̃yc
r̃yd

]
. (42)

Above

K =

[
Jc 0
Jd −I

] [
H +Dx + δwI 0

0 Dd + δwI

]−1 [
Jc 0
Jd −I

]T
(43)

and [
r̃yc
r̃yd

]
=

[
Jc 0
Jd −I

] [
H +Dx + δwI 0

0 Dd + δwI

]−1 [
rx
rd

]
−
[
ryc
ryd

]
. (44)

Since matrix K (43) is forced to be positive definite by the algorithmic mechanism, the normal
equation system (42) can be solved using Cholesky solvers. In particular, GPU acceleration is
achieved by using cuSolverSP “cusolverSpDcsrlsvchol” solver from the NVIDIA’s CUDA Toolkit.

Once ∆yc and ∆yd have been calculated, HiOp computes ∆x and ∆d from[
∆x
∆d

]
=

[
H +Dx + δwI 0

0 Dd + δwI

]−1([
rx
rd

]
−
[
JT
c JdT
0 −I

] [
∆yc
∆yd

])
. (45)

41

	Introduction
	Installing/building HiOp
	Prerequisites
	Building, testing, and installing HiOp
	Support of host-device computations using (generic)CPU-(NVIDIA/AMD)GPU hardware
	Building extra features

	Interfacing with HiOp
	The NLP with dense constraints formulation requiring up to first-order derivative information
	The C++ interface
	Specifying the optimization problem
	Specifying the inter-process/memory distribution of the problem
	Calling HiOp for a hiopInterfaceDenseConstraints formulation

	General sparse NLPs requiring up to second-order derivative information
	C++ interface to solve sparse NLPs
	Specifying the optimization problem
	Calling HiOp for a hiopInterfaceSparse formulation
	Solvers options for hiopInterfaceSparse NLP formulations

	NLPs in the mixed dense-sparse (MDS) form
	The C++ interface
	Calling HiOp for a hiopInterfaceMDS formulation

	Structured NLPs suitable to primal decomposition (PriDec) schemes
	Specifying a starting point for the optimization process
	Obtain information from HiOp
	Compiling and linking your project with the HiOp library

	Solver options
	Options for NLP solvers
	Termination criteria and output
	Filter-IPM algorithm selection and parameters
	Line search and step computation
	Feasibility restoration
	Elastic mode
	Regularization
	Solving internal linear systems
	Linear algebra computational kernels
	Problem preprocessing
	Miscellaneous options

	Options for PriDec solver
	Termination criteria and output
	Algorithm selection and parameters
	Miscellaneous options

	Licensing and copyright
	Acknowledgments
	Appendix
	Condensed Linear System
	Normal Equation

