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Weather-related research often requires synthesizing vast amounts of data that need archival solutions that are
both economical and viable during and past the lifetime of the project. Public cloud computing services (e.g., from
Amazon, Microsoft, or Google) or private clouds managed by research institutions are providing object data
storage systems potentially appropriate for long-term archives of such large geophysical data sets. We illustrate
the use of a private cloud object store developed by the Center for High Performance Computing (CHPC) at the
University of Utah. Since early 2015, we have been archiving thousands of two-dimensional gridded fields (each
one containing over 1.9 million values over the contiguous United States) from the High-Resolution Rapid Refresh
(HRRR) data assimilation and forecast modeling system. The archive is being used for retrospective analyses of
meteorological conditions during high-impact weather events, assessing the accuracy of the HRRR forecasts, and
providing initial and boundary conditions for research simulations. The archive is accessible interactively and
through automated download procedures for researchers at other institutions that can be tailored by the user to
extract individual two-dimensional grids from within the highly compressed files. Characteristics of the CHPC
object storage system are summarized relative to network file system storage or tape storage solutions. The CHPC
storage system is proving to be a scalable, reliable, extensible, affordable, and usable archive solution for our

research.

1. Introduction

Weather research and operational weather forecasting depends
heavily on evaluating the output from high-resolution regional numer-
ical weather prediction models. The Weather Research and Forecasting
(WRF) model is the world's most widely-used regional numerical
weather prediction model relied upon operationally for life-saving
weather forecasts and for aviation, energy, fire prediction, surface
transportation, and water resource management applications (Powers
et al., 2017). The High-Resolution Rapid Refresh (HRRR) version of the
WRF model, developed by the Earth Systems Research Lab (ESRL), is an
hourly updating, cloud-resolving, convection-allowing model run oper-
ationally by the National Centers for Environmental Prediction's Envi-
ronmental Modeling Center (EMC) (Benjamin et al., 2016). Output from
most U.S. operational weather models run by EMC are available on EMC
servers for the current day and then archived by the National Centers
for Environmental Information (NCEI). However, the voluminous HRRR
model output available each hour for forecast durations from 0 to 18 h
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with a grid spacing of 3 km over the contiguous United States (1.9
million grid points) is not yet available from NCEL To archive in a
highly compressed format, a representative sample of the output
generated by the operational HRRR model requires over 200 TB of disk
space per year.

Researchers rely heavily on output from regional models such as
HRRR and WRF to diagnose the interplay between complex atmospheric
processes on spatial scales from 102 — 10° m and temporal scales from 102
~10"s (Benjamin et al., 2016; Powers et al., 2017). A common research
strategy is to focus on case studies of specific weather events as a prac-
tical approach to manage the TBs of output generated by the models (e.g.,
Blaylock et al., 2017; Crosman and Horel, 2017). With continued growth
in computing capabilities, numerical simulations will continue to tran-
sition to finer spatial and temporal resolution over increasingly large
regional domains. As these models grow, so does the storage space and
monetary cost required to archive model output. Of course, large data
storage needs are ubiquitous throughout the atmospheric sciences, for
example, to archive satellite imagery (Moody et al., 2016) or
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multi-decadal numerical simulations of the climate system (Taylor
et al., 2012).

Molthan et al. (2015) highlight that cloud computing resources
(computational services delivered over networks) are providing new
capabilities for supporting numerical weather prediction and are a po-
tential solution to archive large volumes of data (Armbrust et al., 2010;
Sandholm and Lee, 2014). To meet these needs, Sandholm and Lee
(2014) described how these services need to be: scalable; fault-tolerant;
reliable; high-performance; and easy to use, manage, monitor, and pro-
vision efficiently and economically. Public cloud services provided by
corporations (e.g. Amazon, Google, or Microsoft) or research consortia
(e.g. Open Science Data Cloud, https://www.opensciencedatacloud.org/
) are increasingly viable options to meet those requirements, although
understanding the extent to which they are economical can be difficult
(Chou, 2015; Amazon Web Services, 2017a). Private cloud services are
defined as being operated by an organization for which hardware,
networking, storage, and other infrastructure are not directly shared with
other organizations (Mell and Grance, 2011). The Center for High Per-
formance Computing (CHPC) at the University of Utah provides private
cloud services through a data center located off campus.

The objective of this paper is to illustrate the utility and cost effec-
tiveness of a PB disk-based object storage data system managed by the
CHPC for archiving large data sets. The capabilities of object data storage
systems for geoscience applications will be illustrated in terms of an
archive of operational and experimental forecasts from the HRRR model
in the contiguous United States and Alaska from early 2015 to the pre-
sent. While we have relied extensively over the years on other CHPC
storage media (such as a robotic tape archive system and over 100 TB of
network file system disk storage), the object data storage system is
meeting several of our interwoven needs that are less practical using
other traditional data archival approaches: (1) efficient expandable
storage for thousands of large data files; (2) data analysis using fast
retrieval of user selectable byte-ranges within those data files; and (3) the
ability to have the data publicly accessible to the atmospheric science
research community.

The remainder of the paper describes how the archive is built and
how users can access the data (section 2), followed by applications for
which data from the HRRR archive have been used (section 3), and
concludes with a discussion of the growing need for large archives and
some limitations that should be resolved in the future (section 4).

2. Methods
2.1. Pando object storage system

The CHPC has dramatically increased its network file system data
storage capabilities over the past 10 years from ~400 TB to ~14 PB due
to decreased hardware costs and development of cost-effective storage
solutions (Center for High Performance Computing, 2017). However,
archival storage capacity primarily in terms of a robotic tape system has
not increased as rapidly, leaving a large fraction of the data without
backup. To help mitigate this shortcoming, CHPC developed a disk-based
object storage solution referred to as Pando (named for a vast stand of
aspen trees in Utah that is thought to be the largest and oldest single
living organism). Currently at 1 PB in usable capacity, Pando was
developed at lower cost than other archival options and has greater
resiliency, accessibility, and expandability. Researchers lease dedicated
amounts of archival space over a 5-year span to help recover some of the
costs for Pando. They then manage their own space, which helps reduce
CHPC's administrative burden to manage the archive.

The CHPC took into consideration that an improved archival system
needed to scale to a much larger size than what might be affordable
initially. Large network file systems or Redundant Array of Independent
Disks (RAID) sets do not scale well as the number and size of drives in-
crease, particularly since recovering and repairing after an error or disk
corruption may require disks to be offline for many days. The CHPC
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selected Red Hat's Ceph object-based open source storage system (Malt-
zahn et al., 2010) to address the shortcomings of both RAID and file
systems based on published performance comparisons (e.g., Poat et al.,
2015) and testing over several years. Low-level operations, such as block
or file level I/0, are managed by a software layer that manipulates ob-
jects for the user or administrator such that expensive RAID controllers
are not necessary and archived objects can be replicated or made
redundant according to configurable parameters.

Pando was formatted using the 6 + 3 erasure coding, i.e., all objects
are broken into 9 pieces—6 data pieces and 3 redundancy pieces
necessary for data protection and reconstruction. The initial 1 PB Pando
archive consists of 9 storage servers each with sixteen 8 TB drives that are
coordinated by 3 monitor nodes that efficiently maintain the map of the
objects in the system (Fig. 1). If the file system on a single drive becomes
corrupt, then: (1) that drive is logically removed by the system admin-
istrator; (2) the administrator recreates the file system and logically adds
it back in; and (3) the objects are redistributed within the new file system
automatically by the Ceph software to maintain the configured level of
redundancy. The 6 + 3 erasure coding ensures no data loss even if every
disk fails on three servers. The Pando system has the capacity to contain
44 servers before additional network infrastructure must be purchased
making it expandable to approximately 5 PB with current drive capac-
ities. To ensure that Pando is in production past disk warranty periods,
Ceph can transparently migrate the data to new hardware when old
hardware is retired.

The Amazon Simple Storage Service (S3) has been implemented on
Pando through a Reliable Autonomic Distributed Object Store (RADOS)
Gateway node to focus on.

Long-term storage needs separate from the other mounted file sys-
tems available to CHPC users (Nawaz et al., 2016). The RADOS Gateway
node (Fig. 1) serves as an interface between client computers and objects
managed by the RADOS software layer. Present usage suggests that
additional RADOS Gateway nodes will be necessary in the future to avoid
throughput bottlenecks (speeds of only 5 GB s~! during high loads) that
limit optimal utilization of the Pando system. Objects are most efficiently
uploaded to Pando from the CHPC local file systems using rclone (Wood,
2017), which is open source software commonly used to download or
upload files between hard disk and cloud storage systems.

2.2. HRRR data archive

Several implementations of the HRRR modeling system have been
developed by ESRL researchers with staff at EMC maintaining its oper-
ational version for the contiguous United States (Benjamin et al., 2016).
To support air quality research at the University of Utah (Horel et al.,
2016; Blaylock et al., 2017), we started archiving operational HRRR
analysis (forecast hour 0) output files beginning April 2015 on local
network file system disks obtained from the NOAA Operational Model
Archive and Distribution System (NOMADS). Other research projects led
us to download selected meteorological fields from the operational HRRR
1-18 h forecast files beginning in summer 2017 and analysis and forecast
fields from experimental versions of the HRRR for the contiguous United
States and Alaska. The thousands of 2-dimensional meteorological fields
available from the HRRR are stored as gridded binary-2 (GRIB2) files, a
highly efficient binary format that relies on Joint Photographic Experts
Group (JPEG) 2000 image compression (Silver and Zender, 2017).

By early 2017, local file system storage for the HRRR products grew to
over 20 TB with the expectation that by later in 2017, over 100 GB of
model grids would be added per day. That storage approach was
becoming unwieldy to manage across multiple file server partitions and
not practical to facilitate access to the archive for an increasing number of
atmospheric science researchers external to the University of Utah, who
became aware of it through online searches for HRRR model output.
After initial testing of the Pando system, all the locally-archived HRRR
files were transferred to it and removed from the local file system.

Since EMC and ESRL provide efficient access for anyone interested in
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HRRR model output for the current and previous day (Bowman and Lees,
2015), we prefer external users to not overwhelm our archival system by
requesting what is already easily available from those sources. We
execute download scripts after 00 UTC to retrieve files for the previous
day to our local CHPC network file storage, a process that can take several
hours to complete even with multithreading. The files are then copied to
the Pando archive using the open source rclone utility. The s3cmd utility
is used to change permissions for each file from private to public so they
can be accessed by other researchers at the University of Utah
and elsewhere.

The present implementation of Ceph on Pando limits the ability to
view the contents or manipulate the data object files. Rather, each file has
a unique URL that can be used to download it via HTTPS. While anyone
can attempt to directly download such files from the archive, web pages
have been developed for identifying which files are available to simplify
interactive downloads (https://hrrr.chpe.utah.edu; Fig. 2). Users are
encouraged to avoid excessive reliance on the interactive pages and
create automated download procedures using wget or cURL with
example code provided on the aforementioned web page.

Since most users prefer to access a relatively small number of the
meteorological fields contained within each of the large HRRR GRIB2
files, it is cumbersome to retrieve the entire file and then process it to
extract the fields of interest. To facilitate access to specific 2-dimensional
fields, we use the wgrib2 tool (Climate Prediction Center, 2017) to create
a metadata file for each GRIB2 file and provide that information on a

9 Object Storage Device Servers
(each with 16 8TB drives)

Fig. 1. Present architecture of the Pando archive system.
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local web server since there is no need to store them as objects in Pando.
These index files contain for each field its abbreviated variable name,
vertical level, beginning byte, time of the model run, and forecast hour.
Hence, it is straightforward to derive the corresponding byte range for a
variable and retrieve using cURL its 2-dimensional field. Unfortunately, it
is not currently possible to retrieve a byte range within a GRIB2
formatted file for a subsection of the two-dimensional grid (e.g., for a
state or regional area of interest). This is a present limitation of object
storage and GRIB2 file formats that may be solved through continued
development of object storage systems or archiving the gridded data in a
different file format. Hence, the smallest granule that can be retrieved
from a GRIB2 HRRR file is a single field over that entire domain (~1 MB).
Multiprocessing and multithreading techniques such as those available
using Python's multiprocessing module can be leveraged to spread the
work across multiple cores and reduce download time and greatly in-
crease the data processing speed when fields from multiple files are
needed. We have developed Python multi-processor procedures that rely
on basic cURL commands to efficiently access the HRRR files from a
single dedicated CHPC server. For example, computing the minimum,
mean, and maximum wind speed from nearly 17,000 hourly analyses at
the 1.9 million grid points in the operational HRRR model was done in
less than 15 min using 30 processors.

The current HRRR archive directory tree for both the Pando and
metadata archive is branched by model type (operational HRRR, exper-
imental HRRR, and experimental HRRR Alaska), by file type (sfc files
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& HRRR Download Page

© Web Download Instructions

Model Type: HRRR (operational) v
Variables Field: Surface (sfc, 20 fields) v
Date: 4/5/2017

Get this: GRIB2 v Metadata Sample

Tap to download grib2 from 2017-04-05:
Hour 00
Hour 01
Hour 02
Hour 03

Hour 04

Hour 05

Fig. 2. Web interface to interactively access HRRR model output at http://hrrr.chpc.utah.edu.

contain a selection of 2-dimensional fields while many more 2-dimen-
sional fields at fixed pressure levels in the vertical as well as other levels
are available in the prs files), and by date (year, month, and day).

HRRR/
& oper/
L sfe/
Y YYYYMMDD/
G prs/
Y YYYYMMDD/
& alaska/
& sfe/
Y YYYYMMDD/
Y prs/
Y YYYYMMDD/
Y exp/

G sfe/
Y YYYYMMDD/

Each file within the daily directories follow the same naming
convention used by NOMADS when the file is first downloaded (files
from ESRL are renamed to match the NOMADS naming convention). The
files are named by the model type, the initialization hour, variable field,
and the forecast hour ([hrrr/hrrrAK/hrrrX].tlhour]z.wrf[sfc/prslf
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[forecast].grib2). For example, the following request will download the
full surface field file from the operational HRRR analysis for 14:00 UTC 5
April 2017:

https://pando-rgw01.chpc.utah.edu/HRRR/oper/sfc/20170405/
hrrr.t14z.wrfsfcf00.grib2.

Metadata for the corresponding HRRR file can be found in the GRIB2
index file located here:

https://api.mesowest.utah.edu/archive/HRRR/oper/sfc/20170405/
hrrr.t14z.wrfsfcf00.grib2.idx.

The index file can be used to request specific variables within a byte
range. If a user was only interested in 10 m gusts, then the index file
indicates that the byte range for the gusts variable for that file is between
3478099 and 4879421. Using cURL, a user can download the gust var-
iable from the larger file as follows:

curl -o downloaded_file.grib2 -range 2757386-4110515
https://pando-rgw0l.chpc.utah.edu/HRRR/oper/sfc/
20170405/hrrr.tldz.wrfsfcf00.grib2.

3. Applications
3.1. High-impact weather events

While voluminous sets of graphics of analysis and forecasts fields
from the HRRR model runs are generated routinely by ESRL, EMC, aca-
demic institutions, and commercial sources of weather information,
those usually depict only conditions within the past few days and only
show a small fraction of the information contained in the HRRR GRIB2
files. The HRRR Pando archive provides users access to all the fields
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Fig. 3. Mean sea level pressure (hPa) from HRRR analysis at 1700 UTC 14 March 2017 during a high impact New England snowstorm.

contained in the HRRR grib2 files. These files can be used to create
customized graphics of high impact weather events or other features of
interest to the user. For example, the major New England snowstorm on
14 March 2017 is depicted by the HRRR mean sea level pressure analysis
valid at 1700 UTC 14 March 2017 (Fig. 3).

Hourly changes in atmospheric conditions at specific locales can be
examined by downloading the requisite grids each hour, which can be
easily retrieved from the Pando archive using the procedures described

above. Fig. 4 illustrates the conditions analyzed by the HRRR centered on
2100 UTC 27 April 2017 at which time a wildfire near O'Donnell Texas
traversed across the site of a West Texas Mesonet station (Schroeder
etal., 2005) as evident by the 58 °C observed 2-m air temperature at that
time. The HRRR hourly analyses closely track observations (albeit not the
temperature spike associated with the fire) as well as provide additional
diagnostic variables, such as winds at 80 m above ground level and es-
timates of the boundary layer depth.
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Fig. 4. (Left) HRRR simulated radar reflectivity (dBZ) at 2100 UTC 27 April 2017 at the time of a wildfire near O'Donnell, Texas (white circle). (Right) HRRR analysis of temperature (°C),

dew point temperature (°C), 80 m wind speed (m s~'), 10 m gust (m s*), 10 m maximum wind speed (m s~*), 10 m wind speed and direction (half and full barbs denote 2.5 and 5 m s™?,

1

respectively and direction from which the wind blows denoted by the shaft), boundary layer height (m), and level of adiabatic condensation (m) between 0900 UTC 27 April 2017 and 900
UTC 28 April 2017 near O'Donnell, Texas (white circle on the left). Observed temperature, dew point temperature, and wind speed from the O'Donnell West Texas mesonet site are shown

by dashed black lines in the upper two panels.
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Since the primary purpose of the operational HRRR model is to pro-
vide short-term (0-18 h) weather forecast guidance updated every hour
to predict severe weather (Benjamin et al., 2016), assessing the model's
ability to properly forecast such conditions is of high interest. For
example, 30 tornadoes and hundreds of reports of hail and high winds
were received on 4-5 April 2017 from Missouri to Ohio extending
southward to Alabama and Georgia (Storm Prediction Center, 2017).
Airline operations in Atlanta were severely affected on 5 April causing
thousands of delayed or canceled flights. Fig. 5 contrasts the simulated
composite reflectivity and gust analyses from the HRRR model at 1400
UTC 5 April 2017 to the 16 h forecast from the HRRR run initialized 2200
UTC 4 April 2017. The model forecast at 16 h highlights many of the
locations that later received heavy precipitation and strong winds.

3.2. HRRR model composites

Statistics derived over long-time intervals from model output can
provide useful information, such as availability of wind and solar energy
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resources (James et al., 2017) or identifying model performance char-
acteristics (Katona et al., 2016; Ikeda et al., 2017). Preliminary basic
statistics (minimum, mean, maximum, and percentiles) of meteorological
variables (temperature, wind speed, snow cover, lightning, etc.) have
been derived from the 2-year archive of HRRR analysis grids. Multipro-
cessing techniques were used to speed up downloading the files from the
archive and processing the grids for each of the 1.9 million grid points.
Fig. 6 shows the 95th percentile of the 10 m gusts analyzed by the
operational HRRR at 2300 UTC during all days between 18 April 2015
and 30 March 2017. Such statistics are intended to be used to provide
realistic bounds for observations of wind and other variables at over 25,
000 locations in the United States that are available within the past 20
years as well as received continuously as part of the MesoWest and
SynopticLabs projects (Horel et al., 2002; SynopticLabs, 2017). Simul-
taneous calculations that require less memory (e.g., extreme and mean
values) were completed in about 15 min for one variable over the entire
contiguous United States. Brute-force approaches to calculate multiple
percentile values (e.g., 1st, 5th, 10th, 90th, 95th, and 99th) for each hour
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Fig. 5. HRRR analyses (top panels) and HRRR 16 h forecasts (bottom panels) of mean sea level pressure (contours at intervals of 4 hPa) valid 1400 UTC 5 April 2017 with simulated

composite radar reflectivity (left panels in dBZ) and 10 m gusts (right panels in m s™1).
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Fig. 6. 95th percentile 10 m gusts (m s~) from HRRR analyses at 2300 UTC for all days between 18 April 2015 and 30 March 2017.

of the day necessary to generate Fig. 6 required storing more values in
memory and required roughly an hour for a single variable. Improved
approaches using approximation techniques are possible to efficiently
compute percentiles and other statistics and avoid excessive memory
consumption on our compute nodes.

3.3. Initializing WRF simulations

The original impetus for our archive of the HRRR output was to obtain
the best possible high-resolution WRF simulations over northern Utah to
understand a poor air quality episode in the vicinity of Salt Lake City
during 17-18 June 2015. Blaylock et al. (2017) ran a 1 km WRF simu-
lation for northern Utah with initial and boundary conditions obtained
from the HRRR hourly analyses beginning at 0000 UTC 14 June 2015 and
continuing until 0700 UTC 19 June 2015.

While many researchers initialize high-resolution model simulations
from operational and reanalysis modeling systems (e.g., Foster et al.,
2017; Li et al., 2017), the HRRR provides significant advantages in terms
of its 3 km grid spacing, hourly output files, and advanced data assimi-
lation techniques. To the best of our knowledge, the study by Blaylock
et al. (2017) was the first one to use HRRR analyses to initialize and
provide the requisite lateral boundary conditions for WRF research
simulations. While ESRL maintains an internal tape archive of HRRR
model output, the HRRR archive on Pando is currently the only readily
available resource for other researchers to initialize high-resolution WRF
simulations with HRRR boundary conditions. While it is recommended to
initialize WRF simulations with native or model-level HRRR files, we
don't archive the native level files at this time due to its large file sizes
(>600 GB per file). However, WRF can be initialized with the HRRR
pressure-level analysis files available on Pando. The steps required to
initialize WRF with HRRR boundary conditions have been documented
by Blaylock (2017).

4. Discussion and conclusions
The management and distribution of large geoscience data sets have

received increasing attention, particularly given the explosion in public
and private cloud-based resources. For example, an Amazon Web Service
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(AWS) S3 object store hosts the level 2 retrospective and real-time
archive of Next Generation Weather Radar (NEXRAD) data (Amazon
Web Services, 2017b). Our research group in the Department of Atmo-
spheric Sciences uses Amazon AWS including its S3 object store for other
applications that require uninterruptible computational resources and
require a relatively fixed small amount of disk storage (SynopticLabs,
2017). The complexity and volatility in the egress costs to upload or
download data depending on the policies of each public cloud storage
facility precluded our use of one of them for the HRRR archive.

The private cloud CHPC Pando object storage archive has made it
possible to efficiently archive, access, and analyze the HRRR model
output. Pando is also being used by other atmospheric scientists, an-
thropologists, geneticists, and cancer researchers at the University of
Utah. Our HRRR archive has many of the properties of an ideal data
archive described by Kruger et al. (2006)—it is scalable, extensible,
inexpensive, and usable. Having fixed leasing costs over a 5-year period
allows us to plan as our archival needs grow. The private cloud Pando
system provides faster access to our long-term data archive for our needs
as well as provide reasonable access times for the several dozen re-
searchers outside the University of Utah that have already discovered its
utility in the short time that the archive has been available.

The major limitation of the present Pando object storage systems is
that Ceph constrains how the objects can be managed and accessed. Red
Hat now supports Ceph File System (Ceph FS, RedHat, 2017) as a
Portable Operating System (POSIX) compliant file system that is more
flexible to handle the objects in the storage cluster. However, S3-type
objects still must be downloaded to a local disk before the data con-
tained within them can be processed. To avoid excessive downloading of
data not of interest to a user, the highly efficient GRIB2 format of the
HRRR model output allows selecting by byte range and returning only
the fields of interest from the many two-dimensional fields contained
within an object. Other file formats, such as Hierarchical Data Format
Version 5 or Network Common Data Format, may eventually allow
subsetting of S3 objects by variable, region, single grid point, all vertical
levels at a point, etc., but that capability is not presently available.

We expect that NCEI or other government or institutional repositories
will begin to archive operational HRRR model output at some point.
Although long-term archives of evolving experimental versions of models
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are seldom undertaken, having the ability as we do to compare output
from experimental and operational versions of the same model makes it
possible to assess model improvements more efficiently. Research
agencies such as the National Science Foundation now require data
management plans that describe what will happen to the data and met-
adata that led to the research results. While a small number of geoscience
data repositories exist (e.g., the National Center for Atmospheric
Research), those entities have strict standards for accepting large data
sets that are often difficult to meet. At the present time, geoscience data
journals require that data sets be in such data repositories prior to pub-
lication such as that by Jacques et al. (2016). Academic institutions will
increasingly need to consider having facilities like the Pando archive to
effectively meet those data stewardship requirements. However, it re-
mains unclear whether those institutions are willing to subsidize the cost
of maintaining large archives that are necessary to store results once
research projects have been completed and funds are no longer available
from the granting agencies.
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