Path: | rdoc/vector.rdoc |
Last Update: | Sun Nov 14 14:53:48 -0800 2010 |
Contents:
See also GSL::Vector::Complex.
Constructors.
Ex:
>> v1 = GSL::Vector.alloc(5) => GSL::Vector: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ] >> v2 = GSL::Vector.alloc(1, 3, 5, 2) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v3 = GSL::Vector[1, 3, 5, 2] => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v4 = GSL::Vector.alloc([1, 3, 5, 2]) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v5 = GSL::Vector[1..6] => GSL::Vector: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ]
This method creates a vector object, and initializes all the elements to zero.
Creates an GSL::Vector with n linearly spaced elements between min and max. If min is greater than max, the elements are stored in decreasing order. This mimics the linspace function of GNU Octave.
Ex:
>> x = GSL::Vector.linspace(0, 10, 5) [ 0.000e+00 2.500e+00 5.000e+00 7.500e+00 1.000e+01 ] >> y = GSL::Vector.linspace(10, 0, 5) [ 1.000e+01 7.500e+00 5.000e+00 2.500e+00 0.000e+00 ]
Similar to GSL::Vector#linspace except that the values are logarithmically spaced from 10^min to 10^max.
Ex:
>> x = GSL::Vector.logspace(1, 3, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] >> x = GSL::Vector.logspace(3, 1, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
Similar to GSL::Vector#linspace except that the values are logarithmically spaced from min to max.
Ex:
>> x = GSL::Vector.logspace2(10, 1000, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] >> x = GSL::Vector.logspace2(1000, 10, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
This creates a vector of length n with elements from start with interval step (mimics NArray#indgen).
Ex:
>> v = GSL::Vector::Int.indgen(5) => GSL::Vector::Int: [ 0 1 2 3 4 ] >> v = GSL::Vector::Int.indgen(5, 3) => GSL::Vector::Int: [ 3 4 5 6 7 ] >> v = GSL::Vector.indgen(4, 1.2, 0.3) => GSL::Vector [ 1.200e+00 1.500e+00 1.800e+00 2.100e+00 ]
Reads a formatted ascii file and returns an array of vectors. For a data file a.dat as
1 5 6 5 3 5 6 7 5 6 7 9
then a, b, c, d = Vetor.filescan("a.dat") yields
a = [1, 3, 5] b = [5, 5, 6] c = [6, 6, 7] d = [5, 7, 9]
If an NArray object is given, a newly allocated vector is created.
Ex:
na = NArray[1.0, 2, 3, 4, 5] p na <----- NArray.float(5): [ 1.0, 2.0, 3.0, 4.0, 5.0] v = GSL::Vector.alloc(na) p v <----- [ 1 2 3 4 5 ]
See also here.
In Ruby/GSL, vector length is limited within the range of Fixnum. For 32-bit CPU, the maximum of vector length is 2^30 ~ 1e9.
Returns elements(s) of the vector self if args is a single Fixnum, a single Array of Fixnums, or a single GSL::Permutation (or GSL::Index). For all other args, the arguments are treated as with Vector#subvector and a Vector::View is returned.
If args is empty, behaves as set_all and val must be a Numeric.
If args is a single Fixnum, i, sets the i-th element of the vector self to val, which must be a Numeric.
All other args specify a subvector (as with subvector) whose elements are assigned from val. In this case, val can be an Array, Range, GSL::Vector, or Numeric.
NOTE: GSL does not provide a vector copy function that properly copies data across overlapping memory regions, so watch out if assigning to part of a Vector from another part of itself (see example below).
Ex:
>> require 'gsl' => true >> v = GSL::Vector[0..5] => GSL::Vector [ 0.000e+00 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ] >> v[2] => 2.0 >> v[1,2,3] => GSL::Vector::View [ 1.000e+00 3.000e+00 5.000e+00 ] >> v[[1,2,3]] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v[3] = 9 => 9 >> v[-1] = 123 => 123 >> v => GSL::Vector [ 0.000e+00 1.000e+00 2.000e+00 9.000e+00 4.000e+00 1.230e+02 ] >> v[2,3] = 0 => 0 >> v => GSL::Vector [ 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 1.230e+02 ] >> v[2,3] = [4,5,6] => [4, 5, 6] >> v => GSL::Vector [ 0.000e+00 1.000e+00 4.000e+00 5.000e+00 6.000e+00 1.230e+02 ] >> v[1,4] = v[0,4] # !!! Overlapping !!! => GSL::Vector::View [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ] >> v => GSL::Vector [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.230e+02 ]
This method sets all the elements of the vector to the value x.
This method sets all the elements of the vector to zero.
This method makes a basis vector by setting all the elements of the vector to zero except for the i-th element, which is set to one. For a vector v of size 10, the method
v.set_basis!(4)
sets the vector v to a basis vector [0, 0, 0, 0, 1, 0, 0, 0, 0, 0].
This method returns a new basis vector by setting all the elements of the vector to zero except for the i-th element which is set to one. For a vector v of size 10, the method
vb = v.set_basis(4)
creates a new vector vb with elements [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]. The vector v is not changed.
Mimics NArray#indgen!.
An iterator for each of the vector elements, used as
v.each do |x| # Show all the elements p x end
Iterators
Creates a new vector by collecting the vector elements modified with some operations.
Ex:
>> a = GSL::Vector::Int[0..5] => GSL::Vector::Int [ 0 1 2 3 4 5 ] >> b = a.collect {|v| v*v} => GSL::Vector::Int [ 0 1 4 9 16 25 ] >> a => GSL::Vector::Int [ 0 1 2 3 4 5 ]
Ex:
>> a = GSL::Vector::Int[0..5] => GSL::Vector::Int [ 0 1 2 3 4 5 ] >> a.collect! {|v| v*v} => GSL::Vector::Int [ 0 1 4 9 16 25 ] >> a => GSL::Vector::Int [ 0 1 4 9 16 25 ]
Methods for writing or reading the vector. The first argument is an IO or a String object.
Create a new vector of the same elements.
The GSL::Vector::View class is defined to be used as "references" to vectors. Since the Vector::View class is a subclass of Vector, an instance of the View class created by slicing a Vector object can be used same as the original vector. A View object shares the data with the original vector, i.e. any changes in the elements of the View object affect to the original vector.
Create a Vector::View object slicing n elements of the vector self from the offset offset. If called with one argument n, offset is set to 0. With no arguments, a view is created with the same length of the original vector. If called with a range parameter (and optional stride), a view is created for that range (and stride). Note the n, if given, is the length of the returned View.
#!/usr/bin/env ruby require("gsl") v = GSL::Vector[1, 2, 3, 4, 5, 6] view = v.subvector(1, 4) p view.class <----- GSL::Vector::View view.print <----- [ 2 3 4 5 ] view[2] = 99 view.print <----- [ 2 3 99 5 ] v.print <----- [ 1 2 3 99 5 6 ]
Return a Vector::View object of a subvector of another vector self with an additional stride argument. The subvector is formed in the same way as for Vector#subvector but the new vector view has n elements with a step-size of stride from one element to the next in the original vector. Note that n, if given, is the length of the returned View.
This creates a Matrix::View object from the vector self. It enables to use the vector as a Matrix object.
>> v = GSL::Vector::Int.alloc(1..9) => GSL::Vector::Int: [ 1 2 3 4 5 6 7 8 9 ] >> m = v.matrix_view(3, 3) => GSL::Matrix::Int::View: [ 1 2 3 4 5 6 7 8 9 ] >> m[1][2] = 99 => 99 >> v => GSL::Vector::Int: [ 1 2 3 4 5 99 7 8 9 ]
This method exchanges the i-th and j-th elements of the vector in-place.
Reverses the order of the elements of the vector.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.reverse => GSL::Vector::Int: [ 5 4 3 2 1 ]
Transpose the vector from a row vector into a column vector and vice versa.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.col => GSL::Vector::Int::Col: [ 1 2 3 4 5 ]
Adds the elements of vector b to the elements of the vector self. A new vector is created, and the vector self is not changed.
Subtracts the element of vector b from the elements of self. A new vector is created, and the vector self is not changed.
Multiplies the elements of vector self by the elements of vector b.
Divides the elements of vector self by the elements of vector b.
This method multiplies the elements of vector self by the constant factor x.
Adds the constant value x to the elements of the vector self.
For b,
* a Number: ---> <tt>self.add_constanb(b)</tt> * a Vector: ---> <tt>self.add(b)</tt>
For b,
* a Number: ---> <tt>self.add_constanb(-b)</tt> * a Vector: ---> <tt>self.sub(b)</tt>
For b,
* a Number: ---> <tt>self.scale(1/b)</tt> * a Vector: ---> <tt>self.div(b)</tt>
Vector multiplication.
>> v = GSL::Vector[1, 2] [ 1 2 ] >> v*2 [ 2 4 ]
>> a = GSL::Vector[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b [ 3 8 ]
>> a = GSL::Vector[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b.col => 11.0
>> a = GSL::Vector::Col[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b [ 3 4 6 8 ]
>> a = GSL::Vector[1, 2]; m = GSL::Matrix[[2, 3], [4, 5]] [ 2 3 4 5 ] >> m*a <--- Error TypeError: Operation with GSL::Vector is not defined (GSL::Vector::Col expected) from (irb):30:in `*' from (irb):30 >> m*a.col [ 8 14 ]
In-place operations with a vector b.
Element-wise calculation of power p.
Ex)
>> require("gsl") >> v = GSL::Vector[1, 2, 3] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v.pow(2) => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v**2 => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v.pow!(2) => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ]
This exchanges the i-th and j-th elements of the vector self in-place.
These create a copy of the vector self.
Creates a new vector by connecting all the elements of the given vectors.
>> v1 = GSL::Vector::Int[1, 3] => GSL::Vector::Int: [ 1 3 ] >> v2 = GSL::Vector::Int[4, 3, 5] => GSL::Vector::Int: [ 4 3 5 ] >> v1.connect(v2) => GSL::Vector::Int: [ 1 3 4 3 5 ]
Creates a new vector, with elements +1 if x_i > 0, -1 if x_i < 0, otherwise 0. Note that this definition gives the signum of NaN as 0 rather than NaN.
Creates a new vector, with elements fabs(x_i).
>> v = GSL::Vector::Int[-3, 2, -5, 4] => GSL::Vector::Int: [ -3 2 -5 4 ] >> v.abs => GSL::Vector::Int: [ 3 2 5 4 ]
Create a new vector, with elements x_i*x_i.
>> v = GSL::Vector::Int[1..4] => GSL::Vector::Int: [ 1 2 3 4 ] >> v.square => GSL::Vector::Int: [ 1 4 9 16 ]
Creates a new vector, with elements sqrt(x_i).
Ex:
>> v = GSL::Vector[1.1, 2.7, 3.5, 4.3] => GSL::Vector [ 1.100e+00 2.700e+00 3.500e+00 4.300e+00 ] >> v.floor => GSL::Vector::Int [ 1 2 3 4 ] >> v.ceil => GSL::Vector::Int [ 2 3 4 5 ] >> v.round => GSL::Vector::Int [ 1 3 4 4 ]
Creates a new vector of norm nrm, by scaling the vector self.
This normalizes the vector self in-place.
Ex:
tcsh> irb >> require("gsl") => true >> a = GSL::Vector[-1, -2, -3, -4] => GSL::Vector: [ -1.000e+00 -2.000e+00 -3.000e+00 -4.000e+00 ] >> b = a.abs => GSL::Vector: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 ] >> b.sqrt => GSL::Vector: [ 1.000e+00 1.414e+00 1.732e+00 2.000e+00 ] >> b.square => GSL::Vector: [ 1.000e+00 4.000e+00 9.000e+00 1.600e+01 ] >> c = b.normalize(2) => GSL::Vector: [ 2.582e-01 5.164e-01 7.746e-01 1.033e+00 ] >> c.square.sum => 2.0
Creates a new vector by averaring every n points of the vector self down to one point.
Calculate k-th differences of a vector self.
Converts the vector to a String by joining all the elements with a separator sep.
Create an Array of vectors by merging the elements of self with corresponding elements from each arguments.
Ex:
>> require("gsl") >> a = GSL::Vector[4, 5, 6] >> b = GSL::Vector[7, 8, 9] >> GSL::Vector[1, 2, 3].zip(a, b) [[ 1.000e+00 4.000e+00 7.000e+00 ], [ 2.000e+00 5.000e+00 8.000e+00 ], [ 3.000e+00 6.000e+00 9.000e+00 ]] >> GSL::Vector[1, 2].zip(a, b) [[ 1.000e+00 4.000e+00 7.000e+00 ], [ 2.000e+00 5.000e+00 8.000e+00 ]] >> a.zip(GSL::Vector[1, 2], GSL::Vector[8.0]) [[ 4.000e+00 1.000e+00 8.000e+00 ], [ 5.000e+00 2.000e+00 0.000e+00 ], [ 6.000e+00 0.000e+00 0.000e+00 ]]
Returns a new Vector that contains the concatenation self and x, which must be an Array, Fixnum, Bignum, Float, Range, or GSL::Vector.
The methods below change vector length of self. A Vector‘s length may not extend past its original allocation. Use of these methods is discouraged. Existing Views may still refer to elements beyond the end of the shortened Vector. These elements remain allocated, but are effectvely unmanaged.
Deletes items from self that are equal to x. If the item is not found, returns nil, otherwise returns x.
Deletes the element at the specified index i, returning that element, or nil if the index is out of range.
Deletes every element of self for which block evaluates to true and returns self.
This method returns the maximum value in the vector.
This method returns the minimum value in the vector.
This method returns an array of two elements, the minimum and the maximum values in the vector self.
This method returns the index of the maximum value in the vector. When there are several equal maximum elements then the lowest index is returned.
This method returns the index of the minimum value in the vector. When there are several equal minimum elements then the lowest index is returned.
This method returns an array of two elements which has the indices of the minimum and the maximum values in the vector self.
Return the vector length.
Return the vector stride.
Returns the sum of the vector elements.
Returns the product of the vector elements.
Calculate the cumulative sum of elements of self and returns as a new vector.
Calculate the cumulative product of elements of self and returns as a new vector.
Returns 1 if all the elements of the vector self are zero, and 0 otherwise.
Return true if all the elements of the vector self are zero, and false otherwise.
(GSL-1.9 or later) Return 1 (true) if all the elements of the vector self are zero, strictly positive, strictly negative respectively, and 0 (false) otherwise.
(GSL-1.10 or later) Return 1 (true) if all the elements of the vector self are non-negative , and 0 (false) otherwise.
Returns true if all the vector elements are non-zero, and false otherwise. If a block is given, the method returns true if the tests are true for all the elements.
Returns true if any the vector elements are non-zero, and false otherwise. If a block is given, the method returns true if the tests are true for any of the elements.
Returns true if all the elements of the vector self are zero, and false otherwise (just as GSL::Vector#isnull?). If a block is given, the method returns true if the tests are false for all the elements.
Ex:
>> a = GSL::Vector[1, 2, 3] >> b = GSL::Vector[1, 2, 0] >> c = GSL::Vector[0, 0, 0] >> a.all? => true >> b.all? => false >> b.any? => true >> c.any? => false >> a.none? => false >> c.none? => true
Returns 1 or 0.
Returns true if the vectors have same size and elements equal to absolute accurary eps for all the indices, and false otherwise.
Return a Block::Byte object with elements 0/1 by comparing the two vectors self and other. Note that the values returned are 0/1, not true/false, thus all of the elements are "true" in Ruby.
Ex:
>> a = GSL::Vector[1, 2, 3] >> b = GSL::Vector[1, 2, 5] >> a.eq(b) [ 1 1 0 ] >> a.ne(b) [ 0 0 1 ] >> a.gt(b) [ 0 0 0 ] >> a.ge(b) [ 1 1 0 ] >> a.eq(3) [ 0 0 1 ] >> a.ne(2) [ 1 0 1 ] >> a.ge(2) [ 0 1 1 ]
Ex:
>> a = GSL::Vector[1, 0, 3, 0] >> b = GSL::Vector[3, 4, 0, 0] >> a.and(b) [ 1 0 0 0 ] >> a.or(b) [ 1 1 1 0 ] >> a.xor(b) [ 0 1 1 0 ] >> a.not [ 0 1 0 1 ] >> b.not [ 0 0 1 1 ]
Returns the vector indices where the tests are true. If all the test failed nil is returned.
Ex:
>> v = GSL::Vector::Int[0, 3, 0, -2, 3, 5, 0, 3] >> v.where [ 1 3 4 5 7 ] # where elements are non-zero >> v.where { |elm| elm == -2 } [ 3 ] >> a = GSL::Vector[0, 0, 0] >> a.where => nil
Creates a histogram filling the vector self.
Example:
>> r = GSL::Rng.alloc # Random number generator => #<GSL::Rng:0x6d8594> >> v = r.gaussian(1, 1000) # Generate 1000 Gaussian random numbers => GSL::Vector [ 1.339e-01 -8.810e-02 1.674e+00 7.336e-01 9.975e-01 -1.278e+00 -2.397e+00 ... ] >> h = v.histogram(50, [-4, 4]) # Creates a histogram of size 50, range [-4, 4) => #<GSL::Histogram:0x6d28b0> >> h.graph("-T X -C -g 3") # Show the histogram => true
This is equivalent to
h = Histogram.alloc(50, [-4, 4]) h.increment(v)
These methods sort the vector self in ascending numerical order.
This method indirectly sorts the elements of the vector self into ascending order, and returns the resulting permutation. The elements of permutation give the index of the vector element which would have been stored in that position if the vector had been sorted in place. The first element of permutation gives the index of the least element in the vector, and the last element of permutation gives the index of the greatest vector element. The vector self is not changed.
Ex:
>> v = GSL::Vector::Int[8, 2, 3, 7, 9, 1, 4] => GSL::Vector::Int: [ 8 2 3 7 9 1 4 ] >> v.sort => GSL::Vector::Int: [ 1 2 3 4 7 8 9 ] >> v.sort_index => GSL::Permutation: [ 5 1 2 6 3 0 4 ] >> v.sort_largest(3) => GSL::Vector::Int: [ 9 8 7 ] >> v.sort_smallest(3) => GSL::Vector::Int: [ 1 2 3 ]
Compute the Euclidean norm ||x||_2 = sqrt {sum x_i^2} of the vector.
Compute the absolute sum \sum |x_i| of the elements of the vector.
This method converts the vector into a Ruby array. A Ruby array also can be converted into a GSL::Vector object with the to_gv method. For example,
v = GSL::Vector.alloc([1, 2, 3, 4, 5]) a = v.to_a -> GSL::Vector to an array p a -> [1.0, 2.0, 3.0, 4.0, 5.0] a[2] = 12.0 v2 = a.to_gv -> a new GSL::Vector object v2.print -> 1.0000e+00 2.0000e+00 1.2000e+01 4.0000e+00 5.0000e+00
Creates a GSL::Matrix object of nrow rows and ncol columns.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.to_m(2, 3) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ] >> v.to_m(2, 2) => GSL::Matrix::Int: [ 1 2 3 4 ] >> v.to_m(3, 2) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ]
Converts the vector into a diagonal matrix. See also GSL::Matrix.diagonal(v).
>> v = GSL::Vector[1..4].to_i => GSL::Vector::Int: [ 1 2 3 4 ] >> v.to_m_diagonal => GSL::Matrix::Int: [ 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ]
Creates a circulant matrix.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.to_m_circulant => GSL::Matrix::Int: [ 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 1 2 3 4 5 ]
Example:
>> v = GSL::Vector[1..4] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 ] >> v.to_complex [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] [3.000e+00 0.000e+00] [4.000e+00 0.000e+00] ] => #<GSL::Vector::Complex:0x6d7d24> >> v.to_complex2 [ [1.000e+00 2.000e+00] [3.000e+00 4.000e+00] ] => #<GSL::Vector::Complex:0x6d6424>
Converts a vector self into an NArray object. The data are copied to newly allocated memory.
Create an NArray reference of the vector self.
Example:
>> v = GSL::Vector::Int[1, 2, 3, 4] => GSL::Vector::Int [ 1 2 3 4 ] >> na = v.to_na => NArray.int(4): [ 1, 2, 3, 4 ] >> na2 = v.to_na2 => NArray(ref).int(4): [ 1, 2, 3, 4 ] >> na[1] = 99 => 99 >> v # na and v are independent => GSL::Vector::Int [ 1 2 3 4 ] >> na2[1] = 99 # na2 points to the data of v => 99 >> v => GSL::Vector::Int [ 1 99 3 4 ]
Create GSL::Vector object from the NArray object self.
A GSL::Vector::View object is created from the NArray object self. This method does not allocate memory for the data: the data of self are not copied, but shared with the View object created, thus any modifications to the View object affect on the original NArray object. In other words, the View object can be used as a reference to the NArray object.
Ex:
tcsh> irb >> require("gsl") => true >> na = NArray[1.0, 2, 3, 4, 5] => NArray.float(5): [ 1.0, 2.0, 3.0, 4.0, 5.0 ] >> vv = na.to_gv_view # Create a view sharing the memory => GSL::Vector::View [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ] >> vv[3] = 9 => 9 >> na => NArray.float(5): [ 1.0, 2.0, 3.0, 9.0, 5.0 ] # The data are changed >> v = na.to_gv # A vector with newly allocated memory => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 9.000e+00 5.000e+00 ] >> v[1] = 123 => 123 >> v => GSL::Vector [ 1.000e+00 1.230e+02 3.000e+00 9.000e+00 5.000e+00 ] >> na => NArray.float(5): [ 1.0, 2.0, 3.0, 9.0, 5.0 ] # v and na are independent >> na = NArray[1.0, 2, 3, 4, 5, 6] => NArray.float(6): [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] >> m = na.to_gv_view.matrix_view(2, 3) => GSL::Matrix::View [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ] >> m[1][2] = 9 => 9 >> na => NArray.float(6): [ 1.0, 2.0, 3.0, 4.0, 5.0, 9.0 ]
These methods use the GNU plotutils graph application to plot a vector self. The options of graph as "-T X -C" can be given by a String.
Example:
>> x = GSL::Vector.linspace(0, 2.0*M_PI, 20) >> c = GSL::Sf::cos(x) >> s = GSL::Sf::sin(x) >> GSL::Vector.graph(x, c, s, "-T X -C -L 'cos(x), sin(x)'")