NOTES ON APPLESCRIPT IN TgXShop

MICHAEL SHARPE

These are notes made in the course of attempts to write and debug some AppleScripts for TgXShop. The
current TgXShop version is 3.50, running under OS X (Yosemite) 10.10.2. Both Finder and AppleScript
(and especially the Finder AppleScript dictionary) can and do change from time to time, and may
require rewriting previously functional scripts to accommodate the changes. Because of the guesswork
that seems integral to the language, AppleScript may be called a head-banger of a language, or per-
haps I have to say language as head-banger, or class of AppleScript is head-banger, or even
language of head-banger as alias. (In fact, the hyphen in head-banger makes it not legal as an
AppleScript variable.) The motivating force is that it’s the only way to script most Mac GUI applications,
like TgXShop.

1. WHY MACROS?

TXShop’s Macros menu has items whose functions overlap to some extent with engines and their
associated executables. (Recall that engines are usually simple shell scripts located in TgXShop’s Engines
folder.) These are the possible targets for a line like

% !TEX TS-program = latexmk

near the top of your tex source file, which instructs TgXShop to process the file with the engine program
latexmk.engine. The engine files call executable programs located in TgXShop’s bin folder. (E.g.,
latexmk.engine calls the executable 1atexmk.) If there is an engine available to perform the processing
you want, then your experience with the engine will most likely be better than with a macro, for several
reasons:

e shell scripts, PERL scripts and, to a lesser extent, python scripts are likely to prove much more
robust than AppleScripts, due in part to the changes that occur from time to time in the latter;

¢ those other script languages are faster than AppleScript and are more intimately connected to the
uNix shell, while AppleScript’s strength (also its weakness) is inter-application communication;

e engines and the executables they call will most likely have had much more intensive testing and
public exposure, reducing the likelihood of bugs.

Engines like 1atexmk perform all the operations needed, as many times as needed, to produce the final
pdf output, and there is no longer much need to write AppleScripts to run bibtex and the like. So, in my
opinion, the main use for AppleScript macros is operations that either (a) modify your source file but do
not involve any TeX processing; (b) provide you with choices of items for your source document; (c)
bring up information about command options, etc.

For this reason, I'm going to ignore all verbs in the TgXShop dictionary that initiate document processing
(e.g., typeset, latex) that are best performed by an engine.

Date: March 6, 2015.

2 MICHAEL SHARPE

2. THE WAYS OF USING APPLESCRIPT MACROS IN TpXSHOP

Macros are triggered in one of three ways in TgXShop:
e choose the name of the macro from the Macros menu in the document menu bar;

e choose the name of the macro from the Macros menu in the main menu bar on the top line of
the screen—in the sequel, this is what we shall mean by the Macros menu;

e press the associated key combination, if one has been defined. (A key combination may be
defined using the Macro Editor.)

Writing an AppleScript for the Macros menu can be as simple as the following example, which is not at
all useful as it stands.

--applescript direct
do shell script("/bin/1s") --the parens are optional

This is not useful because it does nothing with the output from 1s and does not check for possible errors.
The point is that an AppleScript macro can simply run an external executable program in an arbitrary
language. A slightly more realistic example would be

--applescript direct
try
set s to do shell script("/bin/1ls")
on error number errnum
display dialog "Command 1s returned error number " & errnum
end try

so that the standard output from 1s is captured in the AppleScript variable s and the exit status is passed
along to be handled by AppleScript’s on error. Note that it is important to give a full path to unIx
commands, because you should not make any assumptions about the path used by the shell and, in
addition, you want to avoid any localizations of the command made by the user so you can be sure the
output is in the expected format.

AppleScripts may be involved in the definition of a macro in the Macros menu in four rather different
ways.

e Mode (1): The AppleScript code is placed in the body of a Macro Editor window following
--applescript direct. In this case, the code is interpreted by TgXShop’s internal interpreter
and the TgXShop event loop comes to a halt so that TgXShop does not respond to external stimuli
until the event loop restarts. (This could be triggered, for example, by a TgXShop error message

popping up.)

e Mode (2): The AppleScript code is placed in the body of a Macro Editor window following
--applescript. In this case, the code is interpreted by a copy of ScriptRunner in the TgXShop
bundle. The TgXShop event loop continues but messages from ScriptRunner need to be brought
to the front with an activate command or may be easily missed.

e Mode (3): This refers to AppleScript code that is in an external compiled AppleScript which
is loaded by your macro script as an external AppleScript library. In this case, handlers in the
external library are not subject to the limitations of --applescript [direct]. This may be
the optimal strategy, at the cost of having to write replacement macros for methods such as
save, close and open which can be problematic in mode (1). Note though that a handler in an
external library that has commands from the TgXShop dictionary in a tell "TeXShop" block

NOTES ON APPLESCRIPT IN TgXShop 3

will behave the same way as the same commands in a similar block in the main script. The main
advantage of external scripts is that the error handling can be written just once.

e Mode (4): Save an AppleScript as an application called by do shell script "open -a ...".
The interface does not differ in any way from applications written in other languages, and we
shall not discuss it any further except to say that other languages are usually much more capable
and better-suited for stand-alone use, as long as they do not have to communicate with TgXShop.

3. GENERAL ADVICE ON WRITING APPLESCRIPT MACROS FOR TEXSHOP
Please understand that the following advice applies only to use in TgXShop—in other settings, it might
not be helpful.

e Do all work with files using names in POSIX string format. This will keep the number of conver-
sions and coercions to a minimum. You need to be aware of the difference between a simple
POSIX string (e.g., set fstr to "/Users/Al/Documents") and the result of

set f to (POSIX file fstr)

which is no longer a string, but an object of type POSIX file. The latter can be coerced to the
former by

set fstr to (POSIX path of f)

e One of the first things to do, early in your script, is to gives names to some key folders to permit
easier path construction. E.g.,

set docf to POSIX path of (path to documents folder)
set homef to POSIX path of (path to home folder)

(You should never use ~ as an abbreviation for your home folder as it can fail.)

e Make use of the special constants TgXShop provides. Most useful are #DOCUMENTNAME#, #F ILEPATH#
and #NAMEPATH#. See the full list and descriptions below.

o Ifyou need to read the frontmost document into an AppleScript string variable, you can use, e.g.,
set txt to (the text of the front document) as string

but you should avoid doing so in general because, for a long document, the effects on memory
and speed could be bad. It is usually better to select a block based on the selection.

e To open a file named egl. txt in your Documents folder for writing output:

set txtfile to docf & "egl.txt" --docf ends with /

set outf to (open for access (POSIX file txtfile) with write permission)
write "xyz" to outf

close access outf

To read from that same file:

set inf to (open for access (POSIX file txtfile))
set thetext to (read inf for (get eof inf)) --defaults to Mac OS Roman
close access inf

There is an apparently simpler way to do this:

set thetext to read POSIX file txtfile as «class utf8» --can specify encoding

4 MICHAEL SHARPE

but this fails if the file is empty, and testing for this eventuality takes more steps than the preced-
ing. (The chevrons «» may be entered using Opt-\ and Opt-Shift-\ respectively.)

e Make use of TSLib. scpt, which contains a number of workarounds for TgXShop scripting issues.
(It is described in detail later in these notes.)

e Mode (1) is a little easier to work with than Mode (2), but suffers from some serious limitations
when you want to open, close or save files without making use of TSLib. Use Mode (2) if you
need to perform extensive file manipulation while keeping TgXShop responsive to changes.

e The command do shell script offers many possibilities—it is perhaps the most potent feature
in AppleScript—but there is an overhead cost when using it for small external scripts. Whenever
possible, pipe commands together within one do shell script to avoid repeated opening and
closing of shells.

e AppleScript is fine for small jobs, but large amounts of data should be handled externally by
more capable languages.

e Whenever possible, make changes to a source file by working with the selection, adjusting its
offset and length and then manipulating its content. The search handler can be of much
use in this connection.

3.1. General AppleScript advice.

e Don’t use AppleScript features that are outside its well-tested core. Make maximal use of its most
commonly-used features such as those surrounding text item delimiters and list and string
manipulation.

e Manipulating lists with more than a few hundred items can be very slow. To greatly improve
performance with a longish list my1lst, use something like

property myrawlst : {}
set myrawlst to {} --initialize to empty with each run
set mylst to a reference to myrawlst

e AppleScript variables can be simple variables—integer, real, string, list—or arbitrary objects
defined by some application’s AppleScript dictionary, or even a reference, a sort of recipe by
which a value may be computed using terms from one or more dictionaries. The last form is the
most difficult to understand and debug because it behaves differently from other AppleScript
variables. See the examples discussed later in this document.

4. STARTING A NEW SCRIPT

Unless your script is only a few lines long, you will find it much easier to develop it using the AppleScript
Editor to get the basic layout correct. It provides specific (though sometimes puzzling) error messages,
but provides the exact location of the error, unlike the TgXShop Macro Editor. The fly in the ointment
is that from the AppleScript Editor you cannot make use of some of the best features of TgXShop’s
AppleScript interpreters—the special constants with names like #F ILEPATH#, which greatly simplify the
assembly of filenames and window names. I find it useful to work as follows.

e Decide which constants you willneed. At a minimum, you will most likely make use of #f ILEPATH#,
#NAMEPATH# and #DOCUMENTNAME#, so in the Macro Editor, make your first lines following the
initial comments

NOTES ON APPLESCRIPT IN TgXShop 5

set filepath to #FILEPATH#
set namepath to #NAMEPATH#
set docname to #DOCUMENTNAME#

and make no further use of the #. . # constants in your script. Then, in the AppleScript Editor,
place the corresponding definitions at the top of the file.

set filepath to "/path/to/tex_file"
set namepath to "/path/to/tex_file_less_extension"
set docname to "name_of_frontmost_tex_document"

so they correspond exactly to the output from #FILEPATH#, #NAMEPATH# and #DOCUMENTNAME#.

e The remainder of your script (call it the body) should be developed in AppleScript Editor to take
advantage of its better error diagnoses. Copy the body of the finished script from AppleScript
Editor when it works there, then focus on issues that arise in Macro Editor. (See below.)

Because of the problems with AppleScript macros running in the Macro Editor (documented below), I
find it useful to make use of an external library of handlers which, being compiled outside TgXShop,
do not have the same problems, acting as if they were running in AppleScript Editor. (An exception
is commands running inside a tell "TeXShop" block, which have the same issues they would in the
main script.) The latest version of the library is available from

http://dl.dropboxusercontent.com/u/3825336/TeX/index.html
To load the routines, place these lines following the lines discussed above.

set TSLibAlias to alias ((path to home folder as string) &
"Library:TeXShop:Scripts:TSLib.scpt") --join to previous line

set TSLib to (load script TSLibAlias)

set mytex to POSIX path of (path to documents folder) & "texfiles/"

The last line is not needed to load the library, but makes it easy for me to construct the POSIX paths to
files in that folder.

Here then are how my templates appear:
In Macro Editor:

--applescript direct

--possibly without "direct"

set filepath to #FILEPATH#

set namepath to #NAMEPATH#

set docname to #DOCUMENTNAME#

CUT HERE

Start of script body

set TSLibAlias to alias ((path to home folder as string) &
"Library:TeXShop:Scripts:TSLib.scpt") --join to previous line

set TSLib to (load script TSLibAlias) --to use handlers in TSLib

set mytex to POSIX path of (path to documents folder) & "texfiles/"

In AppleScript Editor:

set filepath to "/path/to/tex_file"

set namepath to "/path/to/tex_file_minus_extension"
set docname to "name_of_document"

CUT HERE

6

MICHAEL SHARPE

Start of script body

set TSLibAlias to alias ((path to home folder as string) &
"Library:TeXShop:Scripts:TSLib.scpt") --join to previous line

set TSLib to (load script TSLibAlias) --to use handlers in TSLib

set mytex to POSIX path of (path to documents folder) & "texfiles/"

TSLib.

scpt contains the following handlers. In all cases, the arguments should be strings. Arguments

representing files should be in POSIX path form and the names of documents in TgXShop should be as
(used to be) displayed in the TgXShop document window, just as provided by #DOCUMENTNAME#. Note that
it not safe to use the abbreviation ~ for the home folder in specifying a POSIX path. Use instead

POSIX path of (path to home folder)

for the equivalent POSIX path, a string ending with ‘/’.

All handlers involving files or folders return the number 1 on failure. Those that do not return a string
value return the number 0 on success.

opendoc (£) opens the POSIX path f in TgXShop. It replaces the troubled open() handler in
TgXShop. E.g., opendoc(mytex & "eg.tex").

savedoc (f) saves document f in TgXShop using its current location. An error is returned if it
has not been saved previously. E.g., savedoc("eg. tex").

savedocIn(f,g) saves document f in TgXShop to a POSIX file g, overwriting g if it exists. Note
that the document £ is not closed and file g is not opened. E.g.,

savedocIn("eg.tex" ,mytex & "egl.tex")

closedoc(£) closes the TgXShop document named £f. If the document has been modified
since it was last saved, it will be saved under its own name. E.g., closedoc("eg.tex"). If the
document has never been saved (e.g., "Untitled") and has been modified, you will be asked for a
name and can choose not to save it.

closedocIn(f,g) closes the TgXShop document named £, saving its contents in the POSIX file g
but not saving changes to the original file. E.g.,

closedocIn("eg.tex" ,mytex & "egl.tex")

docexists(f) takes the POSIX path f and returns the number 0 if it specifies an existing file or
folder, 1 if not.

dirbase(f) takes the POSIX path f and returns a list with two items, the first being the POSIX
path to the parent folder, the second the name of the file within the parent folder. These should
give the same output as the uN1x commands dirname and basename without the overhead of
do shell script.

docname (£) takes the POSIX path £ of an existing . tex file and returns a list with three items, the
first being the POSIX path to the parent folder, the second the name of the file within the parent
folder with . tex removed, and the third provides the name by which the document should be
known if opened in TgXShop. For example, assuming " /Users/Al/Documents/eg. tex" exists,
docname (" /Users/Al /Documents/eg.tex") would return
{"/Users/Al/Documents","eg","eg.tex"}

if the file had not been saved with extension hidden, and otherwise it would return

{"/Users/Al/Documents"”,"eg","eg"}

NOTES ON APPLESCRIPT IN TgXShop 7

This gives you an easy way to construct the equivalents of #. . # items when you open a new
.tex file in a script. E.g., having specified an existing tex file with POSIX path string s,

tell TSLib to set {pdir, shortname, displayname} to docname(s)
set dviname to pdir & "/" & shortname & ".dvi"

e mkdir(f) traverses the POSIX path f, recursively creating any folders necessary. Every compo-
nent of £ will be created as a folder, if such a folder is not present, so do not pass the POSIX path
to afile. E.g.,

mkdir("/x/y/z")

will try first to create the folder x in the root folder. (This will fail because users do not have
permission to write to the root folder.) However, had it succeeded, it would then create a
subfolder y of /x and a further subfolder z of /x/y. It would not overwrite any existing folder
with a new, empty folder, so it is a safe command.

e stroffset(a,b) is a synonym for the usual offset of a in b which may be unavailable in
modes (1, 2) because the meaning of offset has been preempted there by TeXShop’s selection.
E.g., stroffset("b","abc") returns 2.

e trim(s), where s is a string, removes white-space characters (space, tab, line-feed) from both
ends of s. Actually, you can specify what to remove by temporarily changing the value of
trimitems. From modes (1, 2), you could use

set origtrimitems to TSLib's trimitems

set TSLib's trimitems to {linefeed, ASCII character 0, tab}
tell TSLib to set s to trim(s)

set TSLib's trimitems to origtrimitems --reset

5. TEXSHOP CONSTANTS

In modes (1, 2), one has access to special named constants described below. CAUTION: these constants
do not function while the Macro Editor is open, making it impossible to use the Test button if the script
depends on those constants. The values depend on which window is frontmost in TgXShop at the instant
the script started. Let’s say that the front window is any one of eg. tex (or just eg, if you saved the file
with hide extension checked) or eg.pdf or eg console. Then the following constants are defined:

o #FILEPATH# is the full POSIX path string to the file eg. tex;

#TEXPATH# is the same as #FILEPATH#;

o #PDFPATH# is the full POSIX path string to the file eg.pdf, if it exists;

o #DVIPATH# is the full POSIX path string to the file eg.dvi, if it exists;

o #PSPATH# is the full POSIX path string to the file eg. ps, if it exists;

o #LOGPATH# is the full POSIX path string to the file eg. log, if it exists;

o #AUXPATH# is the full POSIX path string to the file eg. aux, if it exists;

o #INDPATH# is the full POSIX path string to the file eg. ind, if it exists;

o #BBLPATH# is the full POSIX path string to the file eg.bbl, if it exists;

o #HTMLPATH# is the full POSIX path string to the file eg.html, if it exists;

o #NAMEPATH# is the full POSIX path string to the file eg. tex, minus the . tex;

8 MICHAEL SHARPE

o #DOCUMENTNAME# is the name as it should appear in the source window, either eg or eg. tex,
depending on whether the document was saved with hide extension checked or not. (This used
to be true, but is not the case at the moment. Nonetheless, it is the name used internally to refer
to the document.)

To emphasize what is perhaps an obvious point, these are fixed for the duration of the script and may
not reflect current values correctly if windows were closed or opened by the script.

6. WORKING WITH A SELECTION

This is not quite as obvious as it seems. A text selection has an offset, a length and a content, and you
should think of these as a snapshot of the current selection at the instant you read a selection, but which
will change whenever you modify (i.e., set) any one of them. Note that offset 0 corresponds to a cursor
position immediately before the first character of the document and, if the document has N characters
(including EndOfLine characters), an offset value of N corresponds to the cursor immediately after the
last character of the document.

When you set a selection property, the other properties may also change. E.g., with

tell application "TeXShop"
set offset of selection of document docname to n --0\le n\le N
end tell

the effect is:

¢ the beginning of the selection changes to offset n—if n is set to a value out of range, the length is
set to 0 and the offset to N, so a good way to send the cursor to the end of the file is:

tell application "TeXShop"
set offset of selection of document docname to -1
end tell

If you then ask for the offset of the current selection, you will get the number of characters in the
document, which is otherwise not so obvious to determine. You might think

tell application "TeXShop"
set n to count of characters of document docname
end tell

could work, but the TXShop dictionary does not know about characters of document ...
You can write

tell application "TeXShop"
set n to count of characters of text of document docname
end tell

but that is highly inefficient for long documents.

o thelength stays the same except for an adjustment so the end of the selection stays in range—i.e.,
the 1ength will change to newlength=N-nif N-n < length

e the content changes to the text fragment of the document from n thru n+newlength.
Similarly, with

tell application "TeXShop"
set length of selection of document docname to k --k\ge 0

NOTES ON APPLESCRIPT IN TgXShop 9

end tell
the effect is:

¢ the beginning of the selection is unchanged if k >= 0, but effectively, nothing is selected (cursor
not visible) ifk < 0;

¢ the end changes to newend=Min (offset+k,N);
e the content changes to the text fragment of the document from offset thru newend.
Likewise, with

tell application "TeXShop"
set content of selection of document dochame to s
end tell

the effect is:
o the offset of the selection is unchanged;
o the end changes to offset+(count of s);
e the content changes to s;
¢ that is, the previous selection is replaced by s, and its length is modified accordingly.

The interaction with TgXShop’s goto command calls for some clarification. First of all, it fails in Mode(1).
Assuming now that we are not using Mode(1), if there are k-1 linefeeds in a document, there are k lines
with indices 1. .k. The effect of

tell application "TeXShop" to tell document docname to goto line j
depends on the location of the current selection.

e If j<1 or j>k-1, there is no effect. (Note: goto cannot be used to move to the last line of a
document. You may use set offset to -1, as described above.)

o If the current selection is completely contained in line j, the selection remains unchanged;

¢ In all other cases, provided 0<j<k, the selection changes to all of line j including the EndOfLine
character.

Suppose you want to expand the current selection to include every complete line touched by the
selection. The following would handle the job.

set docname to #DOCUMENTNAME#
set 1f to linefeed
tell application "TeXShop"
set offs to offset of the selection of document docname
set thelast to (length of the selection of document docname) + offs
set strt to 0
if offs > 0 then
set strt to search document docname for 1f with searching backwards
end if
set offset of selection of document docname to -1
set endofdoc to offset of selection of document docname
set offset of selection of document docname to thelast
set length of selection of document docname to 0

10 MICHAEL SHARPE

set theend to endofdoc
if thelast < endofdoc then set theend to search document docname for 1f
if theend = 0 then set theend to endofdoc
set offset of selection of document dochame to strt
set length of selection of document docname to theend - strt
set s to content of selection of document docname
end tell

Note that search is 1-based, not 0-based and to get the result you expect, you may need to subtract 1 in
some cases to get the offset right. (Not so in the example above.)

7. PROBLEMS WITH DOCUMENT NAMES

The document name is important in addressing a TgXShop window correctly. If you are in a position
to use #DOCUMENTNAME#, that will serve for addressing the tex source window. Currently, it may not in
fact be the title of that window in TgXShop. If you saved a tex file eg. tex with hidden extension, then in
earlier version of Mac OS X and TgXShop (several years ago), the following took place:

o the file system would use eg.tex as the name of the file;
e the name would display as eg in a Finder folder window;

o the AppleScript Finder command exists eg would return true and exists eg.tex would
return false;

¢ TpXShop would open the file with title eg, not eg.tex, and would refer to the document by the
name eg.

The current behavior is different:
o the file system would continue to use eg.tex as the name of the file;
e the name would still display as eg in a Finder folder window;

o the AppleScript Finder command exists eg would return false and exists eg.tex would
return true;

¢ TgXShop would open the file with title eg.tex, not eg, but would continue to refer to the document
by the name eg, not eg. tex.

This change breaks the external library setname.scpt by Claus Gerhardt that used to provide the
document name but which no longer gives a correct result when the tex file was saved with a hidden
extension.

Fortunately, the #DISPLAYNAME# constant makes it unnecessary to use this external library in case
you work with files that are already open and are frontmost in TgXShop, and the library TSLib.scpt
contains a suitable replacement, docname, that can be used if your script opens a new tex file or brings a
different window to the front. The replacement handler consults the file metadata for the correct display
name.

8. APPLESCRIPT VARIABLES, file AND POSIX file

As mentioned earlier, an AppleScript variable can take values from basic types (integer, real, string, list)
or any object defined by any scriptable application, or, more generally, it can be a reference, which in
AppleScript means a kind of formula by which the value could be obtained if the appropriate dictionaries

NOTES ON APPLESCRIPT IN TgXShop 11

were loaded and the associated applications were running. (The need for such values in an environment
performing communication between applications is obvious.) For example, the application System
Events has properties named folder, file, disk itemand container, the last of which points to the
folder containing the designated disk item. Theresultisin factareference whose English representation
is shown below.

set f to alias "Macintosh HD:Applications:sagetex.pyc"
tell application "System Events" to set ff to (container of f)

Result:

folder "Macintosh HD:Applications:" of application "System Events"

You may then use ff to construct, e.g.,

set g to file "sagetex.pyc" of ff

with result

file "Macintosh HD:Applications:sagetex.pyc" of application "System Events"

essentially equivalent to the original £, except that it is not an alias that can be opened from, say, BBEdit.
You may coerce g to an alias using the line

set gg to (g as alias)

Prior to Mac OS 10.5, AppleScript had file specification as one of its basic classes, and allowed
file as an abbreviation. These no longer exist, though POSIX file does exist as a basic class. (Apple’s
online documentation for AppleScript says that file is a basic type and POSIX file is a variant of
file, but this cannot be true as stated, as you may always define a POSIX file as the value of a variable
but not so for a file. Moreover, the class of POSIX file is «class furl», whose name suggests that
POSIX fileisin factavariant of the basic class url.) However, many application dictionaries and OSAX
add-ons do understand the term file, and many will accept the term POSIX file as readily as alias.
Only experimentation will tell which work for particular processes. For one odd example, consider the
construction

tell application "Finder" to set dn to displayed name of file POSIX file "/Users/al/eg.tex"

The file preceding POSIX file really is necessary because, according to its dictionary, Finder un-
derstands displayed name of a file but not of a POSIX file. On the other hand, System Events,
whose AppleScript implementation seems far superior to Finder’s, does understand displayed name
of POSIX file.

9. SPECIFIC PROBLEM AREAS

9.1. Problems with --applescript mode. There are three main problems aside from the ones men-
tioned in the preceding subsection.

e The usual AppleScript line continuation character generated by Option-lower case L is not
recognized as such, though itis in --applescript direct mode.

e The method by which messages are passed back to the user is not reliable. Despite the presence of
an activate line near the top of the script, errors that occur may not come to the front and there
may be no visual indicator that an error occurred unless you think to check the ScriptRunner
icon in the dock.

12 MICHAEL SHARPE

¢ You may realize after a while that there are several copies of ScriptRunner working at once, each
with its own error message, and it is at least easier to shut them all down than in mode (1).

Principally for the second reason, I try to use only the --applescript direct mode even though its
understanding of the TgXShop dictionary is more limited, because it is not hard to work around those
limitations using the external library TSLib.

9.2. Problems with --applescript direct mode.

It’s possible to get into a truly puzzling mess if the script crashes before completion and there are files
left open at the time of the crash. (I'm talking about files you've opened using something like

open for access mylog with write permission

and are written to periodically, like a log file.) What happens in this case is a repeated error message
(when trying the execute the line above) that the file is already open. The only solution is to close the
TXShop application and restart it. This may be the downside to having TgXShop running the AppleScript
interpreter.

It would seem to be good practice to save log messages in a list, then write the list to file at the end so
there are no interruptions and the file can be closed as quickly as possible, though this defeats using the
log to trace premature termination.

In this mode, many forms of save, open and close do not work, or work but produce an AppleEvent
time out error. For this reason, you should always either (a) filter out error —1712ina try .. on error
block, or use the corresponding handler from TSLib. For specific problems, see the next section.

There is one surprisingly tricky issue if you wish to have your macro write to an initially empty TgXShop
document, due mostly to the need to work around TgXShop’s event loop stopping. I found I had to
resort to a rather complex scheme that looks like the following. (See the new Program macro for a fully
detailed example.)

write the macro content as an external AppleScript applet

call the external applet with a do shell script "open -a " line

in the applet, before writing to empty file, run the shell script

#!/bin/bash

exec osascript <<END

tell application "TeXShop"

activate

set offset of selection of front document to 0
end tell

tell application "System Events" to keystroke
END

which brings TgXShop into focus and, in essence, presses the spacebar. This prompts TgXShop to insert
a space in the empty document, initiating the default font and fontsize. Finally, insert your material at
the beginning with the following shell script, whose argument is the text to insert.

#!/bin/bash
exec osascript <<END
tell application "TeXShop"
set offset of selection of front document to 0
set content of selection of front document to "$@"
end tell
END

NOTES ON APPLESCRIPT IN TgXShop 13

9.3. Problematic commands in TgXShop’s AppleScript dictionary.

Here is an example of the defensive code you should employ in mode (1) where save, open and close
can produce spurious AppleEvent timed out errors (error number —1712.)

-- assumes f in POSIX string format
set cdate to (current date) + 30 -- allow 30 seconds for timeout
tell application "TeXShop"
try --the following form works in all modes
open f as POSIX file
on error errmsg number errnum
if (errnum = -1712) and ((current date) < cdate) then
--applescript direct often provokes error number -1712
--set errmsg to ""
else
display dialog errmsg
end if
end try
end tell

In all examples and tests below, it is assumed that there is an existing tex file f specified by
set £ to (POSIX path of (path to documents folder) & "eg.tex")
and a (possibly non-existent) file fn defined by

set fn to (POSIX path of (path to documents folder) & "egl.tex")
set pfn to POSIX file fn

Let dn be the name of a document open in TgXShop.

The column heading ModelN stands for Mode (1) with no errors, ModelE stands for works in Mode
(1) but provokes AppleEvent timed out error, while OtherModes stands for works in Modes
2,3).

SAVE
Command ModelN ModelE OtherModes Remarks
save dn v v Not saved unless modified
save document dn Saves regardless
save front document Saves regardless
tell document f to save Saves regardless
save document dn saving in pfn
save dn in pfn
tell TSLib to savedoc(dn) v
tell TSLib to savedocIn(dn, fn) v

SNENENEN

Did not work, no error msg

NN N RN

OPEN

Command ModelN ModelE OtherModes Remarks
open pfn v v

open fn as POSIX file v v

tell TSLib to opendoc(£fn) v v

Another option is to use the uNix open command (works in all modes)

open -a "TeXShop" '/Users/Joe/Documents/test.tex' --(via do shell script)

14 MICHAEL SHARPE

but this has some problems in mode (1) because the TgXShop event processing loop is suspended—
TEXShop does not see that the file has been opened, and does not modify its document list until TgXShop
once again receives the focus. This can lead to very puzzling behavior in scripts.

CLOSE
Command ModelN ModelE OtherModes Remarks
close dn Does not close, no error msg

Saves if modified

Saves if modified

Saves if modified
Saves to pfn, not dn

close document dn

close front document

tell document f to close

close document dn saving in pfn

tell TSLib to closedoc(dn) v Saves if modified

tell TSLib to savedocIn(dn, fn) Vv Saves to fn, not to dn
(Note that in mode(1), close, even when it functions correctly, will not appear to close the window until
the script is complete, misleading you about its behavior.)

SNENENEN
SENENENENEN

Other supposedly possible forms, like
close document dn saving ask

provoked an AppleEvent timed out error in mode (1), but saved the changes, and did not ask at all in
either of modes (2, 3), so its effect is identical there to close document dn.
CouNT

This works as you would expect in all modes and makes a satisfactory replacement for the non-functional
length command.

set n to count documents

results in a count of all tex source documents currently open in TgXShop.
DOCUMENT
This behaves mostly as you would expect, with one peculiarity in mode (1).

set doclst to documents --returns list of all open tex source documents
Within the same TXShop tell block,

repeat with f in doclst
set s to (name of f)
set p to (path of f)
set b to (modified of f)
end repeat

all function correctly, but outside the TgXShop tell block, the first fails in mode (1).
SEARCH

The search method is not problematic—it seems to work correctly in all modes but the documentation
is a bit sparse and the meaning is slightly unintuitive. It is called with a line like

search document "eg.tex" for "\\begin{" --need to escape backslashes

-- additional options as below

-- [case sensitive <boolean>] : if omitted, default value false

-- [matching as whole word <boolean>] : if omitted, default value false

-- [searching backwards <boolean>] : if omitted, default value false

-- [starting from <integer>] : if omitted, beginning of current selection.

NOTES ON APPLESCRIPT IN TgXShop 15

The returned value is an integer, the index (starting from 1) of the first character of the found string—0 if
not found. (If found, this is the offset of the found string +1.) This method modifies neither the current
selection nor the cursor position. Because this search method uses native TgXShop code rather than
AppleScript string search, it should be more efficient in practice, and with a couple of searches one may
build a selection, from which the content may be extracted. One more thing to keep in mind with a
search:

o with a forward search, the search begins at the cursor (i.e., the offset of the selection), but with a
backward search, the search starts at the character before the cursor. E.g., if the document looks
like 12|34 (with | representing the cursor), then

tell application "TeXShop"
search document docname for "3"
search document docname for "3" searching backwards
search document docname for "2" searching backwards
end tell

result respectively in 3, 0, 2.

The unintuitive part is what happens at the beginnings of lines. Suppose the document has just five
characters, laid out like

12
|45

where | represents the cursor and the character with index 3 is the linefeed character with ASCII ID 10.
The offset would report that the cursor is at position 3, and if you search forwards for the next linefeed,
the result is 3 again. To find the end of the line, you need to start at a position 1 past the cursor in this
case.

10. USING REFRESHTEXT

If you change the contents of a TgXShop file within a macro headed
--AppleScript direct

you can’'t use refreshtext with any effect because TgXShop’s event loop is suspended. This leaves the
document without syntax coloring of new additions, for example. One solution is to run as the last
command of a script an external command that instructs TgXShop to run refreshtext on the front doc-
ument. To do this, I make a shell script named refreshfront thatI saved in ~Library/TeXShop/bin
with contents

#!/bin/bash
exec osascript <<END
tell application "TeXShop"
tell front document to refreshtext
end tell
END

This script has to be made executable with the command
chmod 755 ~/Library/TeXShop/bin/refreshfront
To call this from your macro, the last executed line of the macro should be

do shell script "~/Library/TeXShop/bin/refreshfront & /dev/null &"

16 MICHAEL SHARPE

which seems to return control to TgXShop without waiting for the shell script to finish execution, so that
TgXShop’s event loop is running when the osascript completes.

11. APPENDIX: FILE PATHS, APPLESCRIPT ALIASES AND PATH REFERENCES

AppleScript macro writers need to have a firm grip on the differences between file paths, AppleScript
aliases and AppleScript Path references, the first form being strings in either traditional HFS format like
"Macintosh HD:Users:" or POSIX format like " /Users/". AppleScript aliases are a bit more slippery.
To create an AppleScript alias:

alias "Macintosh HD:Users:" --provided this folder exists

AppleScript will raise a run-time error if the file path you specify following alias does not resolve to an
existing file or folder. So, an AppleScript alias is really a form of reference (i.e., a pointer) to an existing
file or folder—one that is understood by all scriptable applications. The need for a method of referring
to an incipient file or folder is clear, but the means of doing so is somewhat less so. AppleScript used to
use the term Path reference form for an object whose text representation was like

file "Macintosh HD:Userz:" --the folder need not exist

but, as alluded to above, AppleScript no longer contains an object of type file, though there is one of
type POSIX file. However, applications and scripting add-ons often understand file as an object, and
this explains why such objects seem to be permitted to be constructed only in special situations that
call for them. The output from a Choose File Name dialog is just such an object. For other examples, in
the AppleScript Editor, the following all work:

POSIX path of file "Macintosh HD:Userz:"
-- result is incorrect "/Macintosh HD/Userz/" if no "Macintosh HD:"
-- otherwise result is "/Userz/"
tell application "Finder"
if the file theFile exists then set x to 1 -- theFile in HFS format
end tell
tell application "TeXShop"
save front document in file ((path to documents folder as string) & "eg.tex")
end tell
tell application "TeXShop"
save front document in (file ((path to documents folder as string) & "eg.tex"))
end tell

even though file ((path to documents folder as string) & "eg.tex") produces an error if run
by itself. While you may no longer use the old form

set newf to POSIX path of (path to documents folder)&"newfile.txt" as file specification
itis always acceptable to create a Path reference using
set newf to a reference to file ((path to documents folder)&"newfile.txt")

Moreover, it seems to happen in some cases is that a Path reference may be accepted in place of an
AppleScript alias even when the dictionary documentation specifies the need for an alias.

For the TgXShop scripter, the most important means of creating a Path reference is POSIX file, which al-
ways works and with much less mystery than the above constructions using ' file' and 'reference to file'.
For example

NOTES ON APPLESCRIPT IN TgXShop 17

POSIX file "/Users/" --result like 'file "Macintosh HD:Users:"'
POSIX file "/Users" --result like 'file "Macintosh HD:Users"'
set f to POSIX file "/Users/" -- 'file "Macintosh HD:Users:"'
set f to POSIX file "/Users”™ -- 'file "Macintosh HD:Users"'

which may be coerced to AppleScript aliases, if they exist, by appending as alias.

It may be helpful to think of an alias as something you can copy from, and a Path reference as something
you can copy to.

POSIX style filenames are essential when working on the uNix side, where applications understand
neither aliases nor the HFS style file path, or when using handlers in TSLib which expect files to be
specified in that form.

To convert between these formats is usually simple but slightly odd in some cases:

e alias "Macintosh HD:Users:" --create an alias from a folder name

POSIX path of "Macintosh HD:Users:"
-- result is incorrect "/Macintosh HD/Users/" if no "Macintosh HD:"
-- otherwise result is "/Users/"

e POSIX path of file "Macintosh HD:Users:"
-- result is incorrect "/Macintosh HD/Users/" if no "Macintosh HD:"
-- otherwise result is " /Users/"

e POSIX path of alias "Macintosh HD:Users:" --returns "/Users/" if it exists
--error if non-existent

e "/Users/" as POSIX file --result like 'file "Macintosh HD:Users:"'

e "/Users/" as POSIX file as string --result like "Macintosh HD:Users:"

e "/Users/" as POSIX file as alias --result is 'alias "Macintosh HD:Users:"'
e <any alias> as string --result is like "Macintosh HD:Users:"

e POSIX path of (file "Macintosh HD:Users:" as string) --fails

e POSIX path of (file "Macintosh HD:Users:") --works

e file "Macintosh HD:Users:" --fails

When passing a POSIX style path to a unix command, one should guard again the possibility of spaces
somewhere in the POSIX path by referring to the quoted form of:

set ppath to POSIX path of "Macintosh HD:Users:Joe Blow:"
quoted form of ppath --result is '/Users/Joe Blow/'

11.1. Checking for existence. Finder has an exists method which must be called as part of a Finder
tell block. The method has one problem—the name used by Finder may be different from the name
shown in a Finder window if the file was saved with hidden extension.

11.2. Creating a chain of folders. AppleScript’s syntax is painful if you need to create a deeply nested
chain of folders. The mkdir -p command from bash (AKA sh) does the work efficiently, creating the
entire chain of nested subfolders, as necessary.

18 MICHAEL SHARPE

--expects a folder f specified in POSIX form
try
do shell script("/bin/mkdir -p " & quoted form of f)
on error errmsg
display dialog errmsg
end try

It’s important to catch a possible error with an on error fragment, as it may be the only way to know
whether the command succeeded.

11.3. Finding the parent folder. There are several ways to do this, depending on the form taken by
the input. The following is useful when the input is an alias (i.e., there must exist a corresponding file or
folder) rather than just a string—the item returned is a POSIX path.

on getparent(anAlias)
tell application "System Events" to return the POSIX path of (container of anAlias)
end getparent

It is instructive to examine the effect of omitting "the POSIX path of", which would return instead
something like:

folder "Macintosh HD:Applications:TeX:" of application "System Events"

which is in fact not a simple AppleScript object but a reference telling how to recover the result, making
use of the term folder from the System Events dictionary. In order to recover the POSIX path from the
latter, you have to do something like:

set h to getparent(f)

If you want to get the POSIX path of the parent of a possibly fictional POSIX path, you would have to
avoid aliases, and could use

on getparentP (ppath)
set tid to AppleScript's text item delimiters
set AppleScript's text item delimiters to "/"
set 1st to text items of ppath
set n to -2
if count of (last item of 1st) is equal to 0 then set n to -3
set s to (items 1 thru n of 1st) as string
set AppleScript's text item delimiters to tid
return s&"/"
end getparentP

11.4. Finder operations. If you need to deal with files and folders using Finder, you may need to be
aware of some terms from its dictionary. In Finder, you use terms

folder "Macintosh HD:Users:joe:" --note final :

that are special to Finder and must be wrapped in a Finder tell block. There are also useful terms for
special locations in your file system, all returning Finder aliases:

home, home folder -- returns something like 'folder "Macintosh HD:Users:joe:"'
desktop
startup disk -- returns something like 'folder "Macintosh HD:"'

NOTES ON APPLESCRIPT IN TgXShop 19

all of which may be coerced to string form by appending as string or used directly in Finder opera-
tions.

Finder example:

tell application "Finder"
if not (exists folder "TeXShop_test" of home) then
make new folder at home with properties {name:"TeXShop_test"}
end if
set the_folder to POSIX path of ((folder "TeXShop_test" of home) as string)
end tell

StandardAdditions.osax, which is loaded automatically, also defines path to with defined locations
including

path to application support
path to applications folder
path to documents folder
path to downloads folder
path to favorites folder
path to Folder Action scripts
path to fonts
path to home folder
path to library folder -- like 'alias "Macintosh HD:Library:"'
path to library folder from user domain
-- returns alias to your home library provided it is visible in Finder
path to preferences
path to public folder
path to shared libraries
path to system folder
path to system preferences
path to temporary items
path to users folder

The commands need not be run only in a Finder tell block. The result in each case is an AppleScript
alias, which may coerced to a string by appending as string, or to a POSIX string by a construction
like

set h to POSIX path of (path to home folder) -- ends with /
set s to quoted form of (h & "Library/TeXShop/bin")

12. SCRIPTING TEXSHOP CONTROLS
TgXShop has a number of menu items that may be used to change the focus, which is to say the front
window to which all actions are directed. To summarize:
e The Find window is brought up by the Find. . . menu item, or the key equivalent, cmd-F.

e Though the Find window is listed in TgXShop’s Window menu as a separate window, it is not
considered to be a window in AppleScript, where the only windows are source windows showing
. tex source, preview windows showing the .pdf and console windows showing messages from
the typesetting process. The command

tell application "TeXShop" to set w to (name of window 1)

20

MICHAEL SHARPE

tells you the name, and thereby the window type, of the front window.

TgXShop’s Window menu has an item named Source Preview with key equivalent cmd-1 which
toggles between a source window and the corresponding preview window. It has no effect if you
use it while the focus is a console window. (This is not the case with TgXShop 3.46 and higher,
where cmd-1 in a console window sends the focus to the source window.) To script this, use a
block like

tell application "TeXShop"
tell application "System Events" to keystroke "1" using command down
end tell

As discussed earlier, the result of
tell application "TeXShop" to set d to (name of document 1)

is the same for the source, preview and console windows, giving the name of the tex file, if there
is one. (If you open a .pdf in TgXShop that has no associated . tex file, the name will be that of
the .pdf.)

TgXShop’s Window menu has a pair of items Next Source Window (cmd-F2) and Previous Source
Window (shift-cmd-F2) that allow you to move around the list of source documents. It appears
that TgXShop maintains an internal list of all documents opened since it was launched, and the
two commands move up/down in the list, possibly re-opening previously closed documents.
[This is no longer the case with very recent versions of TgXShop.] There is no cycling, so, after
you reach the top, cmd-F2 has no effect, and similarly at the bottom.

Under normal circumstances, both controls can be used in a preview or console window and
will take you to some (not necessarily the corresponding) source window. Circumstances appear
not to be normal if you have open a . pdf with no corresponding . tex file. In this case, both
commands may fail from a console window, and are not guaranteed to work from a preview
window, though usually, one of them does. Scripting these commands requires use of key code
rather than keystroke. (Try googling for applescript key code for a list of all such codes.)

tell application "TeXShop"
tell application "System Events" to key code 120 using command down
end tell

To change the focus to the source window from either the preview or console window, use a
block like:

tell application "TeXShop"
activate
set win to name of window 1
if win ends with ".pdf" then
tell application "System Events" to keystroke "1" using command down
else if win ends with " console" then
set src to (text 1 thru -9 of win) & ".tex"
try
set index of (first window whose name is src) to 1
end try
end if
--tell application "System Events" to keystroke "f" using command down
end tell

NOTES ON APPLESCRIPT IN TgXShop 21

Recent versions of TgXShop (3.46 and higher certainly work) understand cmd-1 even from the
console window, and you may in this case simplify the script to

tell application "TeXShop"

activate

set win to name of window 1

if win ends with ".tex" then -- do nothing

else

tell application "System Events" to keystroke "1" using command down

end if

--tell application "System Events" to keystroke "f" using command down
end tell

13. MISCELLANEOUS BUT NOTEWORTHY APPLESCRIPT DEVELOPMENTS

e The problematic use of offset and length in AppleScript code involving TgXShop might benefit
from a little further detail.

— Itis always the case thatina tell application "TeXShop" block, the meanings of offset
and length will be understood as TgXShop defines them as descriptors for a selection.
The same is true in Mode (1) throughout all code, not just tell application "TeXShop"
blocks.

— External compiled code libraries involving offset and 1ength may be called without this
problem, as, when code is compiled, the meanings of those terms are determined by those
currently in force. For example, in code saved in AppleScript Editor as a compiled script,
and not within a tell application "TeXShop" block, offset will forever after take its
meaning from StandardAdditions and 1ength will take its meaning from AppleScript’s core.
So, for example, you could define in a library

on myoffset of ainb
return offset of ainb
end myoffset

and safely use myoffset in TgXShop code.

— Another way to use offset from StandardAdditions is to specify it in raw form in the Macro
Editor:

set k to «event sysooffs» of ainb

This works also in the AppleScript Editor, but when the containing script is compiled, the
raw form is subsequently decompiled to show instead

set k to offset ofainb

and you will have to manually replace that form with the raw one again before a subsequent
compilation.

e Under Mavericks and Yosemite, it is conceptually much simpler to use external libraries made up
of a collection of AppleScript handlers, saved as either a compiled script (extension scpt) or a
Script Bundle (extension scptd.) You store such libraries in a folder named Script Libraries
in one of your Library folders, such as

~/Library/Script Libraries

22

MICHAEL SHARPE

To use such a library, you insert one command: e.g.,
script myhandlers.scpt
following which you have access to all handlers defined in myhandlers.scpt.

Seehttps://developer.apple.com/library/mac/documentation/AppleScript/Conceptual/
AppleScriptLangGuide/conceptual /ASLR_script_objects.html#//apple_ref/doc/uid/
TP40000983-CH207-SW6 for full details.

Note that the previous load script methods will still function, though they are more cumber-
some.

Under Yosemite, scripts may use a much-expanded vocabulary drawing on the Objective-C
Frameworks. (Under Mavericks, you could use that expanded vocabulary only in libraries.) The
opportunities to wreak havoc within TgXShop now seem unlimited.

