
TEXShop Tips & Tricks
v0.8.2–2018/12/11

H. Schulz
herbs2@mac.com

Contents

1 Introduction 1
1.1 What Isn’t Here 2
1.2 What Is Here 2

2 Editing, Typesetting and Viewing — the
Work Cycle 2
2.1 Editing the Source File 2

2.1.1 LATEX & Matrix Panels 3
2.1.2 The Tags and Labels Popups 3
2.1.3 Find/Replace 3
2.1.4 Spell Checking 5
2.1.5 “Hiding” Index Commands 6
2.1.6 Syntax Coloring 6
2.1.7 Line Numbers 7

2.2 Typesetting 7
2.2.1 Removing “Aux” files 7
2.2.2 Experimenting 7
2.2.3 Dealing with Errors 8

2.3 Viewing the Output pdf File 8
2.3.1 Synchronizing between

pdf and Source 8
2.4 Working with a Large Document . 8

2.4.1 Switching between Source
Windows 9

2.5 Working with BibDesk and Citations 9
2.6 Getting Help for Packages 10

3 Controlling the Keyboard 10
3.1 Menu Shortcuts & System Prefer-

ences 10
3.2 More Editing Help 10
3.3 Key Bindings 10

4 Macros 11
4.1 Text Macros 12
4.2 Applescript Macros 12

5 Command Completion 12
5.1 Completions 13
5.2 Substitutions or Abbreviations . . 13
5.3 But Typing \ is Difficult 14
5.4 Hey, it doesn’t work! 14

6 Extending Processing via Engines 14
6.1 The pdflatexmk engine 15

Appendices 15

A — Command Completion Tables 15

1 Introduction

TEXShop is a “Front End” for a TEX distribution on Mac OS X. As such it allows the user to create
and edit TEX source files, interact with the TEX distribution (e.g., typeset the source file) and finally
preview the final pdf file. It also allows the user to go back and forth between preview and source.

Over the years TEXShop has added many features. Some of them are obvious and are meant to
help a novice get started. Others are a bit more subtle in their use and the underlying power of
these features needs to be coaxed out.

Note: Starting with TEXShop 3.99 the Source tab of TeXShop→Preferences has been split into
Source and Editor tabs. This document will use the notation of TEXShop 3.99 and later; if you are
using earlier versions of TEXShop items in the Editor tab are found in the Source tab.

1

mailto:herbs2@mac.com

1.1 What Isn’t Here

This article is, first of all, not about TEX or LATEX. I don’t intend to teach you how to write TEX source.
There are many fine books and articles that will teach you how to become a TEXpert or, at least, a
TEXpätzer like me.

Although there is some introductory material it is also not meant as a complete manual for
the use of TEXShop for the total novice. Over time it might evolve into such a document but I’ve
got to start somewhere and this is that start.

1.2 What Is Here

In this article I hope to introduce you to some of the more subtle things you can do to make your
life as a TEX source editor easier. These include adding keyboard commands and extending the
editing capabilities of TEXShop; helping you make short(er) work of creating documents, etc., with
the use of Macros and Command Completion; and, finally, how one can extend the processing
capabilities of TEXShop using Engines.

2 Editing, Typesetting and Viewing — the Work Cycle

This is about as close to a beginner’s section you will get in this document.
The usual cycle for producing a document with TEXShop is: first, edit the Source document,

entering necessary codes for the typesetting phase; second, typeset the edited document and;
third, examine the resulting pdf file. You may have to return to editing the document after
attempting to typeset if errors are detected during the typeset phase. You will almost always cycle
through these stages multiple times.

2.1 Editing the Source File

The first thing you’ve got to do to create that great work is to type it into the source document that
will be typeset and viewed later. This involves both putting LATEX markup as well as your wonderful
words into the document.

To get started you can open a new document using File→New (Cmd-N) and then fill in
the start of a new document by choosing a template from the Templates popup menu in the
Source Window or use the File→New From Stationery. . . command and picking appropriate
Stationery from the list. Note that the templates and stationery provided are certainly not com-
plete; if you have some that you think are of general use feel free to submit them for inclusion
in TEXShop. You can add personal Templates and Stationery to ~/Library/TeXShop/Templates

and ~/Library/TeXShop/Stationery respectively. Note: In TEXShop 3.58 and later you can use
the TeXShop→Open ~/Library/TeXShop Menu item to open that folder in Finder. Note:
~/Library is the Library folder in your HOME folder; not /Library, the Library folder at the
rootof your Hard Drive. Note: UnderMac OS X 10.7 and later theLibrary folder is “hidden”
by default; in Finder hold the Opt key down and click on the Go menu and it will be available.
Under OS X 10.9 and later you can permanently show ~/Library in your HOME folder by
opening and selecting your HOME folder, choosing View→Show View Options (Cmd-J) in
Finder and then checking Show Library Folder.

Stationary is meant to be a skeleton for a complete, new document while a Template can be
added at any point in a document so may just contain fragments that may be useful as additions
to certain documents; e.g., specific entries for certain packages that may only be needed in a
particular document. On the other hand, a Template may also contain the skeleton for a complete
new document for a particular use; that’s the way I tend to use them.

2

(a) (b)

Figure 1: (a) The LATEX Panel; and (b) Matrix Panel.

2.1.1 LATEX & Matrix Panels

While I believe that panels with a clickable interface actually hinder learning I’ll mention that
TEXShop has two panels: one to help with entering LATEX code (the LATEX Panel) and one for setting
up the basic structure of a matrix or tabular (the Matrix Panel). These are toggled on/off under
the Window Menu. Figure (1) shows what the panels look like.

It is possible to make a few changes and additions to the LATEX Panel by editing the ~/Library/

TeXShop/LatexPanel/completion.plist file. Note: all plist files must be edited using UTF-8 Uni-
code encoding.

2.1.2 The Tags and Labels Popups

The Tags popup menu on the Source Toolbar will automatically list sectioning commands so you
can quickly jump to a relevant part of your document source. You can add your own tag to the list
at a particular place in the document by placing the line

%:my tag name

at that position and it will then appear in the popup list so you can jump to that location quickly.
See Figure (2). Sorry, tags are not recursively included for files you \include or \input.

Like the Tags popup menu the Labels popup, available in TEXShop 4.18 and later, automatically
lists labels, rather than tags, in the document you’re document. Similar to the Tags popup it only
contains Labels for the edited document. Choosing one of those Labels from the list takes you to
the corresponding \Label command.

2.1.3 Find/Replace

There are three Find/Replace “panels” available with TEXShop 3.xx (two with TEXShop 2.xx). Each
is discussed individually below. You choose the Find/Replace Panel you wish to use on the Source

tab under TeXShop→Preferences. You must restart TEXShop to enable any changes made to the
Find/Replace Panel choice in Preferences.

3

Figure 2: The Tags Popup Menu.

(a) (b)

(c)

Figure 3: The Find/Replace “panels” available in TEXShop: (a) the standard Apple Find Panel; (b) the
Ogrekit Find Panel with the More Options panel displayed; and, (c) the Apple Find Bar available
with TEXShop 3.xx.

Apple Find Panel The traditional Apple Find/Replace panel. A simple to use panel for finding
and replacing text. The Standard Apple Find/Replace Panel is shown in Figure (3a) on
page 4.

OgreKit Find Panel An advanced Find/Replace panel that supports Regular Expressions (regex

for short) of various styles (press the More Options button to select the dialect). Regex is a
very advanced way to find and replace text and is a good investment of your time to learn.
The OgreKit Find Panel with the More Options panel displayed is shown in Figure (3b) on
Page 4.

Apple Find Bar Only available in OS X 10.7 and later; and therefore only in TEXShop 3.xx. It
provides a drop down bar for doing Find with an additional line if you select Replace. See
Figure (3c) on page 4 for an example of the Apple Find Bar; the additional Replace line is
displayed.

4

2.1.4 Spell Checking

By default TEXShop allows you to use Apple’s Spell Checker as built into most applications. Unfor-
tunately that Spell Checker doesn’t know anything about LATEX commands so there is a tendency
to flag those commands as misspelled words. There are several Spell Check applications that are
LATEX-aware with the two most popular being Excalibur (maintained by Rick Zaccone, currently
at version 4.07 and installed in /Applications/TeX/Excalibur by the MacTEX install package) and
cocoAspell (by Anton Leuski and currently at version 2.5 for El Capitan and later) which installs
a Spelling Preference Pane in System Preferences. More information about these two Spell
Checkers is found below.

If you use different dictionaries for different documents (e.g., English or German depending
upon the document) you can have TEXShop automatically choose the proper dictionary on a
document by document basis by placing a line like

% !TEX spellcheck = English

(for the English (Aspell) dictionary in this case) near the top of each document. Search for
‘checking spelling’ (without the quotes) in TEXShop’s Help→TeXShop Help Panel. . . for more
detailed information on the designation of a particular dictionary.

Apple Spell Checker The main problem with using the Apple Spell Checker with TEX is that
the normal dictionaries will flag most TEX and LATEX command names and many arguments of
those commands which is rather annoying. TEXShop 4.18 and later have introduced some help to
solve some of those problems as long as you check Edit→Check Spelling While Typing and use
one of the Apple Dictionaries (i.e., not ones used for cocoAspell—see below).You need to check
one or more of the items in the Spell Checking section of the Source tab of TEXShop→Preferences.
The most important item to check is the Do not check TeX commands. Please read the TeXShop

Changes 4.18 section of the Help→Changes document for more detailed information.

Excalibur The Excalibur Spell Checker is a stand-alone application that reads in a Source file,
allows you to run a spell check which you then Save as a modified Source file; TEXShop automati-
cally picks up the changes in that Source file. There are several versions of Macros that allow you
to run Excalibur from within TEXShop. One by Michael Sharpe (with minor modifications by H.
Schulz) can be downloaded from <https://herbs.github.io> as TeXShopExcaliburMacro.zip.
With any of those macros TEXShop automatically picks up the spell checked and saved version
of the Source file and replaces the old contents of the displayed Source document by the spell
checked version; any changes you make to the Source file while Excalibur is still correcting the
document will be lost so don’t do that!

More dictionaries for Excalibur are available at <http://excalibur.sourceforge.net>.

cocoAspell The cocoAspell Spell Checker integrates itself into the Apple Spell Check system.
After enabling it and choosing the active dictionaries from the installed Spelling Preference Pane
in System Preferences you can choose one to use within TEXShop by using Edit→Show Spelling

and Grammar (Cmd-:) and choosing an Aspell dictionary. You must Quit and Restart TEXShop if
you wish to make that dictionary the default.

Information on obtaining and installing more dictionaries for cocoAspell is available at <http:
//people.ict.usc.edu/~leuski/cocoaspell/>. Version 2.5 of cocoAspell installs and works
properly with macOS versions El Capitan, Sierra and later. If you have a problem installing
on High Sierra or later download the document ‘InstallingCocoAspell.pdf.zip‘ from <https:
//herbs.github.io>, un-zip it and follow the directions to complete the installation.

5

https://herbs.github.io
http://excalibur.sourceforge.net
http://people.ict.usc.edu/~leuski/cocoaspell/
http://people.ict.usc.edu/~leuski/cocoaspell/
https://herbs.github.io
https://herbs.github.io

(a) (b)

Figure 4: The Default (4a) and an alternate set (4b) of Syntax Colors in TEXShop.

2.1.5 “Hiding” Index Commands

Indexing commands tend to duplicate information that is part of the text and therefore interfere
with the process of comprehending the text itself. It is possible to have TEXShop colorize \index
commands in a bright yellow. To do that you need to add a ‘ColorIndex’ checkbox to the Source
window’s Toolbar. With the Source window active you can either Right-Click (or Ctl-Click) on the
Toolbar, choose Customize Toolbar. . . , or Window→Customize Toolbar. . . , and Drag and Drop
the ColorIndex checkbox to a place on the Toolbar. Checking that box will make all \index{text}
commands turn a bright yellow, by default, and “recede” into the background; see Figure (4a) on
page 6.

2.1.6 Syntax Coloring

TEXShop provides Syntax Coloring for TEX documents as an aid to pick out text versus markup in
source documents. To activate the Syntax Coloring make sure that Syntax Coloring is checked
in TeXShop→Preferences→Editor. The default color scheme is a bright red for comments, a
dark blue for commands and a dark green for “marker” characters ({, } and $); see Figure (4a) on
page 6. In addition, as noted in section (2.1.5) above, TEXShop offers a special Syntax Coloring for
\index commands so that they “recede” into the background and you can more easily read the
surrounding text.

ForTEXShop earlier than 4.08. You may not like the default Syntax Coloring scheme. Searching
for ‘syntax colors’ (without the quotes) in TEXShop’s Help Panel gives information on how to
change the colors for comments, commands and “marker” characters. It is also possible to
change the color of \index commands from the default bright yellow to some other color. The
corresponding hidden preference variables are indexred, indexgreen and indexblue. See Figure
(4b) on page 6 for an example. (If you like those adjusted syntax colors you can download
TeXShopSyntaxColors.zip from <https://herbs.github.io>. You can also edit those scripts to
create colors you prefer.)

For TEXShop version 4.08 and later. Recent versions of TEXShop now have a Themes tab in
TEXShop→Preferences. This tab allows you to change many colors of foreground, background,
syntax colors, etc., and save them as a complete Color Theme to be used in the standard Light
Mode or the Dark Mode that comes with macOS Mojave. See the version 4.08 section of the
Changes document under the Help menu for complete instructions.

If you have changed the syntax colors for pre-4.08 versions of TEXShop using the method given
above those colors will not be used by version 4.08 out of the box. To retrieve those colors see the
method in the Help→Changes document.

6

https://herbs.github.io

2.1.7 Line Numbers

It is sometimes handy to show line numbers to the left of your Source document. Errors and
warnings shown in the Console window during typesetting give the File Name and Line Number
in the proper Source file. To turn on Line Numbering by default check the Line Numbers box in
the Editor section of the Editor pane in TeXShop→Preferences. You can use Source→Show Line

Numbers (Ctl-Cmd-L) to toggle Line Numbering on/off for a particular document. There is also an
Edit→ Line Number. . . (Cmd-L) Menu Item which will prompt for a line number and then jump
to that location.

Note: Lines are defined to be bounded by typed Return characters so a soft-wrapped paragraph
will count as a single line.

2.2 Typesetting

Once you are ready to take a look at how your document will appear you typeset it with the default
engine, pdflatex out of the box, by simply using the Typeset→Typeset (Cmd-T) command.

You may wish to use a different engine as your default. You can change the default engine in
TeXShop→Preferences→Typesetting.

If you use the pstricks package extensively or include many eps graphics files in your docu-
ment you may wish to typeset using latex→dvips→ps2pdf since pdf(la)tex does not allow
for direct inclusion of eps files1. The easiest way to do this is to include the line

% !TEX TS-program = latex

at the top of your document. Then TEXShop will use the latex+distiller typesetting method
noted above no matter what the default engine setting. Change latex to pdflatex to force use of
pdflatex to typeset your file.

2.2.1 Removing “Aux” files

The process of typesetting produces several auxiliary files that contain information about cross
references, bibliography, indexes, etc. If an error occurs during typesetting these files can be left
in some unknown state and need to to be removed before attempting to typeset the document
again. The File→Trash Aux Files (Ctl-Cmd-A) command removes most of the files that may create
problems.

With TEXShop 3.22 and later there is an additional way to remove those files and then typeset
the document with a single command. If you hold the Opt key down while clicking the Typeset

menu the Typeset→Typeset command becomes Typeset→Trash Aux & Typeset (Opt-Cmd-T).
Search for ‘trash aux’ in Help→TeXShop Help Panel. . . for the list of all file extensions

removed by the Trash Aux Files and Trash Aux & Typeset menu commands. The Terminal

commands used to add additional extensions to the trash list and return the list to the default list
of extensions is also given in that section of TEXShop’s Help Panel.

2.2.2 Experimenting

Version 3.37 and later of TEXShop has an Edit→Experiment. . . menu item. Clicking on that item,
with a Source file open, opens a new, resizable “Experiment” window which allows you to enter
text. When you click the Typeset button on that window TEXShop will use the preamble from
your open Source file and typeset the text in the Experiment window, opening a special Preview
window to show the result. Great for experimenting with a figure to get it just right, etc.

1The pdflatex program in MacTEX-2010 and later will do on-the-fly conversion of eps files.

7

Figure 5: Console Window

2.2.3 Dealing with Errors

Figure (5) on page 8 shows the Console Window which appears when you typeset a file. The
Console tab of TeXShop→Preferences allows you to change the background and foreground
(character) colors2 along with some other preferences.

If your typeset run comes across an error it will stop and wait for input which is done on the
bottom line. If you wish to end the typeset run you can click on the Abort button. Click on the
Goto Error (Ctl-Cmd-E) to move to the error location in the proper Source file. Understand that
your typesetting run gives an error when it finally figures out there is an unrecoverable error but
that error may be much earlier in your Source file. Also, make sure to read Section (2.4) to properly
set up the files in a distributed document.

2.3 Viewing the Output pdf File

Assuming the document was successfully typeset the pdf file will automatically open in a separate
Preview window.

You can control how it’s displayed in the Preview Menu. You can change the default settings
in TeXShop→Preferences→Preview.

2.3.1 Synchronizing between pdf and Source

With more recent TEX distributions you can also skip back and forth between a location in the
Preview Window and the equivalent location in the Source Window by Cmd-Clicking in either one
to go to the (approximate) location in the other. See Figure (6) for an example of Source→Preview
and Preview→Source synchronization.

2.4 Working with a Large Document

It is often handy to break a large document into more manageable subordinate parts and then
create a “root” file which contains the preamble and \include commands to bring all the parts
together for typesetting.

To have TEXShop “know” which file to typeset when working on a subordinate file put the line

% !TEX root = path/to/rootfile.tex

2I’ve chosen colors that correspond to my ancient Heathkit Terminal.

8

(a) (b)

Figure 6: (a) Source→Preview Synchronization; and (b) Preview→Source Synchronization.

(a) (b)

Figure 7: BibDesk Plugin: (a) citation insertion; and (b) cross-reference insertion.

at the top of your subordinate file; path/to/rootfile.tex is the relative or absolute path to the root
file for this document. Once this is done TEXShop will typeset the root file if you press Type-

set→Typeset (Cmd-T) even though you are editing a subordinate file and properly synchronize
between the Source and pdf. E.g., if the root file is called mygreatbook.tex and the chapter files,
chapter1.tex, etc., are in a chapters sub-folder below the root file then place the line

% !TEX root = ../mygreatbook.tex

at the top of each of the chapter files. The ../ means go up one folder level to find the root file.

2.4.1 Switching between Source Windows

If you have multiple source files open you can switch between just those windows by using the
Window→Next/Previous Source Window (Cmd-F2/Shft-Cmd-F2) menu commands.

2.5 Working with BibDesk and Citations

TEXShop has a built-in “plugin” that interacts with the BibDesk bibliography application to allow
you to complete citation references in the \cite command. To enable the use of the “plugin”
make sure that TeXShop→Preferences→Editor→Editor→BibDesk Completions is checked.

To use it you must first open the required bibliography (bib) file(s) in BibDesk. Enter several
characters from the reference label within the \cite command and press F5 to get a list of
matching references from the bib file(s) with a bit of information about each one. Scroll to the
one you want and press Return or Tab. See Figure (7) on page 9 for an example.

The “plugin” also works for entering cross-references within \ref or \pageref commands
but only for those with labels in the file you are editing.

9

2.6 Getting Help for Packages

There are many times when having help about a given package can be handy. TEXShop has an
interface to texdoc which will bring up that documentation. Execute Help→Show Help for

Package. . . (Opt-Cmd-I) and enter the name of the package.
You can also easily look at a package directly with the Help→Open Style File. . . command

and enter the full package file name including the proper extension (e.g., .sty for packages or
.cls for document classes).

3 Controlling the Keyboard

One of the best ways to speed up your entry of text in a source file is to keep your hands on the
keyboard as much as possible—only one of the reasons I don’t like the “clicky” interface of the
LATEX and Matrix Panels. There are many shortcuts associated with the TEXShop menu system but
this section is about changing and adding others and other keyboard customizations.

3.1 Menu Shortcuts & System Preferences

Sometimes you’d like to add a shortcut to a menu item that doesn’t have one or add one to a
command whose shortcut you dislike. Mac OS X 10.4 (Tiger) and later have a method to add
shortcuts to specific menu items both globally and in specific programs. This feature has become
much more reliable in OS X 10.5 and especially in OS X 10.6 and later.

One example using Mac OS X 10.6 (Snow Leopard) or later: TEXShop 2.36 has added a
File→New from Stationery. . . command, without a shortcut, which can be very helpful once
you set up stationery the way you want. To add Opt-Cmd-N as the shortcut to that menu item:
open up the System Preferences application to Keyboard→Keyboard Shortcuts (just Shortcuts

in Mavericks) and select Application Shortcuts (App Shortcuts in Mavericks); press the + button
to add a shortcut; select TEXShop as the application; enter the exact menu title [New from Sta-

tionery. . . — note you must enter a real ellipsis, ‘. . . ’, (Opt-; with the English keyboard layout)];
and press Opt-Cmd-N as the shortcut.

Note: If you don’t like a particular shortcut to a menu item you can usually change it to
something that suits you better using the same technique used above.

3.2 More Editing Help

TEXShop is built using Apple’s programmers interfaces (called frameworks) and therefore inherits
all the properties and functionality of those interfaces. There are many things available through
the Text framework that aren’t tied to the keyboard by default, e.g., many ‘emacs-like’ keyboard
commands, but Apple has made it possible to add those commands to all applications that use
the Text framework; e.g., TextEdit and Mail as well as TEXShop.

This is done by creating a special file, DefaultKeyBinding.dict, and placing it in a particular
location, ~/Library/KeyBindings (you may have to create the KeyBindings folder there if it doesn’t
already exist).

You can get more information about this, as well as a (useful) sample, by downloading the
KeyBindings.zip file at <https://herbs.github.io>.

3.3 Key Bindings

Besides adding shortcuts to Menu Items you can actually bind keystrokes, within TEXShop, to
expand into groups of characters. Checking the TeXShop→Preferences→Editor→Key Bindings

option will enable this feature (again use the Editor tab in TEXShop 3.99 and later). You can
also toggle it on/off for any particular document using the Source→Key Bindings→Toggle

On/Off Menu Item. This feature was previously called Auto Completion; not to be confused with

10

https://herbs.github.io

Figure 8: The Key Bindings Menu. Figure 9: The Key Bindings Editor.

Command Completion—see section (5) below. Note: this facility only works with code generated
by a single keystroke (possibly obtained by pressing multiple keys at once rather than in sequence);
e.g. it won’t work with é on the US keyboard since that is generated by the two keystroke sequence
(Opt-e e).

E.g., pressing Opt-, with a US keyboard layout, usually enters ≤ into your document but
with Key Binding enabled \leq will be entered. Similarly, with some text selected pressing " will
surround the selected text with ‘‘ and ’’.

You can add, remove or change the key bindings using the Key Bindings Editor (Source→Key

Bindings→Edit Key Bindings File. . .). Figures (8) and (9) show the Key Bindings Menu and Editor.
Once in the Editor the left hand column displays the input keystroke while the right hand

column shows what will be substituted for that keystroke. To see how you produce some of
those keystrokes enable the Keyboard Viewer in System Preferences→Keyboard→Keyboard by
checking the ‘Show Keyboard & Character Viewers in menu bar’ item and then clicking on the
new keyboard icon in your Menu Bar.

4 Macros

Macros can be simple text substitutions or Applescript programs that can do all sorts of processing
on a file. You can also assign a keyboard shortcut to any macro for direct execution. The ones that
are part of TEXShop are found under the Macros Menu.

You can remove or add additional macros to the menu by using the Macro Editor (use the
Macros→Open Macro Editor command). The Macro Editor window and extra menu items in the
Macros Menu when the Editor is open are shown in Figures (10) and (11) respectively.

Besides writing your own macros you can add macros supplied by others to the Macros menu
one of two ways: copy and paste the text version of the macro into a New Item in the Macro Editor;
or obtain the macro as a plist file and use the Add macros from file. . . command found in the
Macros Menu when the Macro Editor is open (again, see Figure (11)).

More information on macros can be found by searching for macros in Help→TeXShop Help

Panel. . . .

11

Figure 10: The Macro Editor Window. Figure 11: The extra menu items when
the Macro Editor is open.

4.1 Text Macros

Text macros are simple text substitutions. You can also tell TEXShop to insert any selected text
using #SEL#, place the cursor using #INS# and even put in multiple lines in the macro itself. Then
you can assign the text macro to a keyboard shortcut.

I like to use Cmd-B and Cmd-I to insert \textbf{...} and \emph{...} into the document
where ... is any possible selected text. Macros to do that are already under the Macros→Text

Styles Menu so we need only assign keyboard shortcuts to them. To assign Cmd-I to the emphasize

macro: open the Macro Editor where the form of the Macros menu appears in the left hand pane;
click the emphasize macro found under Text Styles; click the Key insertion box and simply insert
a lower case ‘i’ (the Cmd key is assumed and additional modifier keys can be checked off).

4.2 Applescript Macros

You cannot distinguish Applescript macros in the Macros Menu from text macros but they can do
complicated processing and add/change the source file in TEXShop. One example in the default
set is the Program macro that creates a

% !TEX TS-program = xxxx

line at the top of a file with your choice of engine substituted for xxxx. You can look at the
Applescript code for this macro by clicking on its name in the Macro Editor.

Some detailed tips on creating Applescript Macros for use in TEXShop can be found in the
Help→Notes on Applescript in TeXShop document by Michael Sharpe.

5 Command Completion

LATEX markup is rather wordy which is nice because it describes what it’s supposed to do but a
bit painful to write. Command Completion allows you to insert complete environments and
commands with a few keystrokes and the press of a “trigger” key (this is Esc by default but
can be changed to Tab in the Source Tab’s Command Completion Triggered By: section in
TeXShop→Preferences).

Commands that have arguments usually have a Mark (•) inserted for each argument. You
move to the next argument by using the Source→Command Completion→Marks→Next Mark

command (Ctl-Cmd-F [or Opt-Trigger]). This also selects the Mark so typing automatically removes
the Mark and substitutes the typed information. See the complete documentation in the ~/

12

Library/TeXShop/CommandCompletion folder for much more information. The complete list of
completions and abbreviations is available in Appendix A, starting on page (15).

5.1 Completions

You can complete many commands by starting to type them and pressing the trigger key. Varia-
tions on the commands with differing numbers of optional arguments are generated by additional
presses of the trigger. One example: typing \sec and then the trigger on a new line produces

\section{•}

while a second press of the trigger gives

\section*{•}

the *-variant of the command and a final press of the trigger gives

\section[•]{•}

with the optional argument.

5.2 Substitutions or Abbreviations

Besides completions for partial command insertions there are also many abbreviations. These are
short mnemonics for complete substitutions.

All abbreviations for environments start with a ‘b’. To generate a complete itemize environ-
ment place \bite on a line by itself and press the trigger key to get

\begin{itemize}

\item

•

\end{itemize}•

with an extra Mark at the end so you can easily jump to the end of the environment. Additional
items can be generated by typing \it and the trigger to get

\item

•

ready for entry of text.
In addition to the \section command lower level sectioning commands have abbreviations.

Sub-sections can be generated by typing \ssec and the trigger to get

\subsection{•}

with subsequent presses of the trigger key giving the *-variant and finally the variant with the
optional argument.

As a final example \tt and the trigger gives the \texttt{•} command and a second press of
the trigger gives the declaration \ttfamilywith similar results for other font changing commands.

A set of tables for all the completions and abbreviations supplied with TEXShop can be found
in Appendix A on page 15.

13

5.3 But Typing \ is Difficult

Some keyboard localizations make it difficult to type ‘\’ directly; e.g., it takes multiple keystrokes
to do so using the French keyboard localization. Hope isn’t lost! In most cases an abbreviation or
start of command doesn’t have to start with a ‘\’ but rather any ‘white space character’ (i.e., the
start of a fresh line, a space or tab). So instead of

\sec

and the trigger key to produce

\section{•}

you can use

sec

at the start of a line and the trigger key to produce the same completed command.
Similarly, writing tt and the trigger will give \texttt{•} since it is preceded by a space

character. However ‘tt will not work since the tt isn’t preceded by a ‘white space character’; in
that case you will have to use ‘\tt. The simplest way to make that easier is to create a macro that
does nothing but insert a ‘\’ (without the quotes) and assign it to a simple Cmd based keystroke.

5.4 Hey, it doesn’t work!

If these examples don’t work you probably need to let TEXShop update the ~/Library/TeXShop/

CommandCompletion folder; simply delete that folder from ~/Library/TeXShop and restart
TEXShop.

6 Extending Processing via Engines

TEXShop offers several default “engines” (also referred to as “scripts” which is left over from earlier
times) in its Typeset Menu. These include running Plain TeX or LaTeX (either using pdftex or
TeX+DVI), BibTeX, MakeIndex, MetaPost or ConTeXt. But there are many things you may wish to
do that fall outside of this limited set so TEXShop also allows you to create new engines that are
stored in ~/Library/TeXShop/Engines. These additional engines do not show up in the Typeset

menu but only in the popup list on the Source and Preview Toolbar (see Figure (12) on page 15).
You can use these engines by choosing from that popup list and then pressing the Typeset

button or, a better choice if you use different engines for different documents, by putting a line
like

% !TEX TS-program = xelatex

at the top of your source file; the example given will run the xelatex engine on this file indepen-
dent of other choices. You can override the choice you make in the line with one of the basic
engines (e.g., run BibTeX) by using the items in the Typeset Menu directly.

TEXShop is shipped with a few engines activated (i.e., directly in the ~/Library/TeXShop/

Engines folder) but also includes several additional ones in ~/Library/TeXShop/Engines/Inactive.
As an example let’s activate and use the pdflatexmk engine found in ~/Library/TeXShop/Engines/

Inactive/Latexmk.

14

Figure 12: The Engines Popup Menu on the Source Toolbar.

6.1 The pdflatexmk engine

If your document has cross-references, bibliographies and/or indexes it takes multiple pdflatex
runs with intermediate runs of bibtex and/or makeindex to create the bibliographies, indexes
and resolve all cross-references. The pdflatexmk engine automates this whole process.

TEXShop 3.07 or 2.46 and later activate the pdflatexmk engine by default in a fresh installa-
tion. If you are using an earlier version of TEXShop, or even updated to the latest version from
an earlier version, you need to activate the engine. To activate the engine simply move the
pdflatexmk.engine file from ~/Library/TeXShop/Engines/Inactive/Latexmk two folders up, to
~/Library/TeXShop/Engines. When you restart TEXShop you can check that pdflatexmk is now in
the popup menu.

Then place the line

% !TEX TS-program = pdflatexmk

at the top of your source file. From then on when you simply typeset the file (Typeset→Typeset

or Cmd-T) TEXShop will use this engine and the complete process of typesetting the document to
its final form will be carried out.

Appendices

A — Command Completion Tables

The following tables contain the Command Completions and Abbreviations included by default
with TEXShop. Table 1 on page 16 is a list of all included environment abbreviations. Table 2 on
page 17 lists included abbreviations/completions for commands and declarations. Finally, Table 3
on page 18 are the included abbreviations for Greek letters.

It is important to remember that with a given abbreviation successive presses of the trigger key
go to the next match in the list. E.g., there are three sectioning commands, sec for the standard
section command, secs for the “starred” version of the command and seco for the version with
an optional argument; if you enter sec as your abbreviation successive presses of the trigger goes
from the sec to the secs to the seco versions before returning to your original abbreviation. That
means there are many abbreviations that you never need to remember.

Note: do not attempt to memorize these tables. Learn a few items that you use all the time
and then slowly add to your knowledge as you need them.

15

Table 1: Environment abbreviations.

Abbreviation Environment Abbreviation Environment

barr array blett letter
babs abstract blist list
bali align bminp minipage
balis align* bminpo minipage
baliat alignat bmult multline
baliats alignat* bmults multline*
balied aligned bpict picture
baliedat alignedat bpmat pmatrix
baliedato alignedat bquot quotation
bapp appendix bquo quote
bbmat bmatrix bsplit split
bcase cases bsubeq subequations
bcent center btab tabular
bcenum compactenum btabs tabular*
bcenumo compactenum btabx tabularx
bcitem compactitem btabl table
bcitemo compactitem btablo table
bdes description btabls table*
benu enumerate btablso table*
benuo enumerate btbl table
bequ equation btblo table
bequs equation* btbls table*
beqn eqnarray btblso table*
beqns eqnarray* btabb tabbing
bfig figure bbib thebibliography
bfigo figure bindex theindex
bframe frame btheo theorem
bframeo frame btitpg titlepage
bflalig flalign btrivl trivlist
bflaligs flalign* bvarw varwidth
bfll flushleft bverb verbatim
bflr flushright bvers verse
bgath gather bwrap wrapfigure
bgaths gather* bwrapo wrapfigure
bgathed gathered bwrapo2 wrapfigure
bgathedo gathered bwrapoo wrapfigure
bite itemize
biteo itemize

16

Table 2: Commands and Declarations.

Abbreviation Command Abbreviation Command Abbreviation Command

-- textendash midr midrule renewcomo renewcommand
--- textemdash mnorm mathnormal renewcomoo renewcommand
--- textemdash w/sp msf mathsf rncm renewcommand
adlen addtolength mtt mathtt rnewc renewcommand
adcount addtocounter mit mathit rncmo renewcommand
bf ; midr midrule rnewcoo renewcommand
bfd bfseries mnorm mathnormal rncmoo renewcommand
biblio bibliography mdd mdseries rmc rmfamily
bibstyle bibliographystyle mbox mbox rbox raisebox
botr bottomrule makebox makebox rboxo raisebox
bibitem bibitem mboxo makebox rboxoo raisebox
bibitemo bibitem makebox makebox sec section
center centering mboxoo makebox secs section*
chap chapter mpar marginpar seco section
cmidr cmidrule multic multicolumn ssec subsection
cmidro cmidrule ncol space & space ssecs subsection*
em emph ncm newcommand sseco subsection
emd em newc newcommand sssec subsubsection
foot footnote ncmo newcommand sssecs subsubsection*
frac frac newco newcommand ssseco subsubsection
fbox fbox ncmoo newcommand spar subparagraph
fboxo framebox newcoo newcommand spars subparagraph*
fboxoo framebox nct newcolumntype sparo subparagraph
geometry geometry newct newcolumntype setl setlength
hw headwidth newpg newpage stcount stepcounter
hw2tw headw=textw npg newpage sf textsf
href href nline newline sfd sffamily
item item newlin newline sc textsc
ito item nlen newlength scd scshape
incg includegraphics newlen newlength sl textsl
incgo includegraphics nenv newenvironment sld slshape
it textit newenv newenvironment sqrt sqrt
itd itshape nenvo newenvironment sqrto sqrt
latex LaTeX newenvo newenvironment tt texttt
latexs LaTeX w/sp nenvoo newenvironment ttd ttfamily
latexe LaTeXe newenvoo newenvironment tw textwidth
latexes LaTeXe w/sp pgref pageref tex TeX
label label par paragraph texs TeX w/sp
lbl label pars paragraph* tilde textasciitilde
lettrine lettrine paro paragraph topr toprule
lettrineo lettrine pgs pagestyle toc tableofcontents
listf listoffigures parbox parbox tableofcontents tableofcontents
listt listoftables parboxo parbox tpgs thispagestyle
rule rule parboxoo parbox thispagestyle thispagestyle
ruleo rule parboxooo parbox up textup
mbf mathbf pbox parbox upd upshape
mrm mathrm pboxo parbox url url
mcal mathcal pboxoo parbox usep usepackage
msf mathsf pboxooo parbox usepo usepackage
mtt mathtt ref ref verb verb
mit mathit renewcom renewcommand verb2 verb

17

Table 3: Greek Letters. The ‘d’ versions are not shown.

Abbreviation Command Abbreviation Command

xa alpha xvp varpi
xb beta xph phi
xch chi xcph Phi
xd delta xvph varphi
xcd Delta xps psi
xe epsilon xcps Psi
xve varepsilon xs sigma
xet eta xcs Sigma
xg gamma xvs varsigma
xcg Gamma xz zeta
xio iota xr rho
xk kappa xvr varrho
xl lambda xt tau
xcl Lambda xth theta
xm mu xcth Theta
xn nu xvth vartheta
xo omega xu upsilon
xco Omega xcu Upsilon
xp pi xx xi
xcp Pi xcx Xi

18

	Introduction
	What Isn't Here
	What Is Here

	Editing, Typesetting and Viewing — the Work Cycle
	Editing the Source File
	LaTeX & Matrix Panels
	The Tags and Labels Popups
	Find/Replace
	Spell Checking
	``Hiding'' Index Commands
	Syntax Coloring
	Line Numbers

	Typesetting
	Removing ``Aux'' files
	Experimenting
	Dealing with Errors

	Viewing the Output pdf File
	Synchronizing between pdf and Source

	Working with a Large Document
	Switching between Source Windows

	Working with BibDesk and Citations
	Getting Help for Packages

	Controlling the Keyboard
	Menu Shortcuts & System Preferences
	More Editing Help
	Key Bindings

	Macros
	Text Macros
	Applescript Macros

	Command Completion
	Completions
	Substitutions or Abbreviations
	But Typing \ is Difficult
	Hey, it doesn't work!

	Extending Processing via Engines
	The pdflatexmk engine

	Appendices
	— Command Completion Tables

