
Special Comment Lines; Hidden Preferences

1 Magic Comment Lines

A “Magic Comment Line” is a command in the source which is interpreted by TeXShop.
Such lines must occur in the first twenty lines of a source file.

• % !TEX program =

• % !TEX encoding =

• % !TEX root =

• % !TEX numberingCorrection =

• % !TEX useTabs

• % !TEX useTabsWithFiles

• % !TEX tabbedFile{ }(optional short name)

• % !TEX pdfSinglePage

• % !TEX spellcheck =

• % !BIB program =

• % !TEX parameter =

• % !TEX useOldSyncParser

• % !TEX useConTeXtSyncParser

• % !TEX useAlternatePath

• % !TEX bookDisplay

• % !TEX standardDisplay

• % !TEX PageDirectionL2R

• % !TEX PageDirectionR2L

1



2 Program Examples

TeX source files can be typeset by many programs: TeX, LaTeX, pdfLaTeX, luaLaTeX,
etc. TeXShop has an “Engine mechanism” to extend this list to user defined shell scripts,
which can run a sequence of programs one after another. The Special Comment “program”
line determines which program typesets a particular source file. But using this line is never
required because TeXShop has other ways to determine the typesetting program.

If the special comment line is present, it overrides all other methods of determining the
typesetting program. Thus if a particular source uses Unicode and requires XeLaTeX,
adding a Special Comment line will guarantee that it is always typeset by the correct
program.

The syntax of Special Comment lines is very picky about required spaces, cases, etc. Thus I
recommend Ramon Figueros-Centeno’s “Program” macro, because it lists all active engines
and the user can simply click the required engine; Ramon’s macro will automatically insert
a Special Comment with exactly the right syntax.

Below are some examples:

% !TEX program = tex

% !TEX program = latex

% !TEX program = pdftex

% !TEX program = pdflatex

% !TEX program = xelatex

% !TEX program = pdflatexmk

Note that “tex” and “latex” produce TeX and DVI typesetting, in which TeX outputs a
dvi file, which is then processed to produce a final pdf file. “pdftex” and “pdflatex” use
pdftex to directly output pdf files. Note also that “xelatex” and “pdflatexmk” are engines
defined by scripts in ∼Library/TeXShop/Engines.

3 Encoding Examples

These Special Comment lines fix the encoding used to read and write a source file, overriding
all other methods of setting this encoding. It is important to use the exact name for
an encoding used by the Macintosh, so I again recommend Ramon Figueros-Centeno’s
“Encoding” macro, which lists all possibilities and requires only a click on a choice to
produce the correct syntax line.

% !TEX encoding = UTF-8 Unicode

% !TEX encoding = Iso Latin 9

% !TEX encoding = Mac Chinese Traditional

2



4 Tabbed Window Examples

The examples in this section still work, but they are mostly replaced by the tabbing
features introduced in TeXShop 4.72. Read the changes document about that version for
details.

The special comment “root” is explained elsewhere in the TeXShop Help Panel, and used
when a project is divided into a commanding root file and included chapter files.

Since macOS Sierra, the Macintosh has supported tabbed windows. See the documentation
of Sierra for instruction on creating these tabs using only the Finder.

TeXShop has three special comment commands to extend this build-in system support for
tabs.

% !TEX useTabs

% !TEX useTabsWithFiles

% !TEX tabbedFile{Galois.aux}(Aux)

% !TEX tabbedFile{Galois.log}

% !TEX tabbedFile{~/Graphics/faireyes.eps}

The first line above assumes a root file containing “include” lines for the chapter sources.
This special comment creates a window containing the root and various chapter sources as
tabs in a single window. In this case, TeXShop searches the root file for the include-lines
which name these chapter files.

The last four lines describe a more general method of creating tabbed views. This method
requires more information from the user, but produces more flexible tabs. The “useTab-
sWithFiles” line introduces the method, which then produces a tabbed window for each
“tabbedFile” line. This line contains a partial or full path to the file in curly brackets.
The tabs will be named using these paths, but this can create long tab names, so it is
possible to provide shorter names for the tabs inside round brackets. These shorter names
are optional. Optional names are only available in High Sierra and above.

3



5 More Examples

% !TEX numberingCorrection = 0 + current - desired

This command lists the number of preliminary pages before the main material is given on
pages starting with page 1. TeXShop uses this information to synchronize the PageNumber
box on the toolbar with actual page numbers in the document.

% !TEX pdfSinglePage

This command was proposed by a user for Beamer. The user preferred Multiple Page mode
for the display of articles and books, but wanted Beamer documents to appear as single
pages in preview, ready to be projected onto a screen. Place this special comment in the
source of any document whose preview window should appear in single page mode.

% !TEX spellcheck = German

This command causes the Spelling and Grammer panel to use the German dictionary when
the document is active, even if by default another dictionary is generally used.

% !BIB program = biber

This causes the BibTeX command to run an alternate program, in this case biber.

% !TEX parameter =

When engine scripts run, they are passed a parameter giving the full path to the source
file. This command passes a second parameter to such engine scripts. The engine script
can ignore this parameter, but in some cases it is useful to write a script which is able to
perform several tasks, depending on the new parameter.

% !TEX useOldSyncParser

% !TEX useConTeXtSyncParser

Synctex was written by Jerome Laurens. It causes a TeX engine to output a .synctex file
with information needed to jump from a spot in the source to a corresponding spot in
the preview, and vice-versa. Laurens also provides parser code for front ends, making it
possible for front end authors to provide syncing ability without much extra work. In TeX
Live 2017, Laurens fixed bugs and extended both pieces of code.

4



The ConTeXt system for luaTeX is written by Hans Hagen. Hagen often replaces pieces
of TeX Live with his own code in ConTeXt. In 2017, Hagen wrote his own version of the
sync code, but unfortunately he based it on Lauren’s earlier version 2016 of the code, The
2017 parser cannot handle this code.

After a good deal of work, TeXShop contains both the 2016 and 2017 versions of the parser.
By default it uses the 2017 version, but ConTeXt users can switch to the older parser using
the special comment above. I don’t yet know what will happen in 2018, but shoehorning
in both parser libraries was an unpleasant task I am not likely to attempt again.

(Added in 2021): Hans modified the sync code in ConTeXt, Then he wrote routines which
front ends can call to obtain sync information from the ConTeXt synctex file. In short,
Laurens’ parser code is completely replaced by code in ConTeXt. The special comment
line ”useConTeXtSyncParser” causes TeXShop to call this ConTeXt code. From 2021 on,
this is the preferred sync method for ConTeXt users.

One consequence of this development is that Hans can modify sync code if he wishes without
breaking sync in TeXShop. This is a welcome development. Thanks to Nicola Vitacolonna
for calling this to my attention and urging TeXShop to adopt the new calls.

% !TEX useAlternatePath

Most TeXShop users pair it with the TeX Live distribution of TeX. This distribution is
updated once a year, when new versions of the various executable files are released. The
style files, class files, fonts, etc. in TeX Live are updated daily.

This organization works for most TeX binaries. ConTeXt is an exception because Hans
Hagen updates it regularly and often. Luckily, there is an easy way to install and update
ConTeXt, supported by a beautiful series of web pages called the ”ConTeXt Garden.”
See https://wiki.contextgarden.net/Main Page. Notice the link on this page titled ”Install
ConTeXt and start typesetting.” This link downloads and installs everything needed to
typeset using ConTeXt, placing it in a location of the user’s choice. One typical place is
∼/bin/context.

TeXShop needs to be reconfigured to use this distribution rather than TeX Live. This is
easy for someone who always typesets with ConTeXt, but troublesome for users who write
some documents in LaTeX and some in ConTeXt. TeXShop now has a Preference setting
in the Engine tab called ”Alternate Path” where users can insert the full path to their
ConTeXt distribution. The special command line ”useAlternatePath” can then be added
to the top of a ConTeXt document to use that path to ConTeXt rather than the standard
path to TeX Live.

5



% !TEX bookDisplay

% !TEX standardDisplay

% !TEX PageDirectionL2R

% !TEX PageDirectionR2L

In “double page” and “double multi-page” modes, the Preview window shows the first page
by itself and then shows a series of double pages. By convention, there are an odd number
of pages in a book before the actual content begins, so this causes the left and right pages
to appear as they would if a user opened the actual book. These magic lines allow users
to change this behavior on a document-by-document basis. The first magic line causes the
first page to appear by itself, and the second causes it to appear as a pair with the second
page.

In Japan, text can be either vertical or horizontal, and vertical text pages should appear
from right to left. The last two lines set this preference on a document by document
basis.

6 Hidden Preferences

TeXShop has a large number of Preference Settings which make it possible for users to
customize the behavior of the program to their liking. The most important settings are
made visible by TeXShop Preferences, but more obscure settings are hidden and only
available through the Terminal in /Applications/Utilities. To apply such a preference, it
is important to quit TeXShop, then enter the setting in Terminal and push RETURN, and
then restart TeXShop.

This document lists all hidden preferences mentioned in the Changes document covering
TeXShop 3.07 and later. version 3.07. A complete list of hidden preferences is given in the
TeXShop Manual.

6



TeXShop Versions Before 4.08

• defaults write MakeatletterEnabled YES

• defaults write TeXShop NSFontDefaultScreenFontSubstitutionEnabled -bool YES

• defaults write TeXShop SyncTeXOnly YES

• defaults write TeXShop ScreenFontForLogAndConsole -bool YES

• defaults write TeXShop WatchServer NO

• defaults write TeXShop AutoSaveEnabled NO

• defaults write TeXShop SourceInterlineSpace 1.0

• defaults write TeXShop ResetSourceTextColorEachTime YES

• defaults write TeXShop SwitchSides YES

• defaults write TeXShop InterpolationValue 3

• defaults write TeXShop FixPreviewBlur YES

• defaults write TeXShop FixLineNumberScroll NO

• defaults write TeXShop SourceScrollElasticity NO

• defaults write TeXShop YosemiteScrollBug NO

• defaults write TeXShop ReverseSyncRed 1.00

• defaults write TeXShop ReverseSyncGreen 1.00

• defaults write TeXShop ReverseSyncBlue 0.00

• defaults write TeXShop FixSplitBlankPages NO

• defaults write TeXShop IndexColorStart YES

• defaults write TeXShop OriginalSpelling YES

• defaults write TeXShop ContinuousHighSierraFix NO

• defaults write TeXShop TabsAlsoForInputFiles YES

• defaults write TeXShop FlashFix NO

• defaults write TeXShop FlashDelay 0.25

7



Version 4.08

• defaults write ColorImmediately YES

• defaults write OpenWithSourceInFront NO

Remark: The first item is obsolete. If the second item is YES, the source window opens in
front of the preview window when a document is first opened.

Version 4.76 and Later

• defaults write TeXShop FixVoiceOver NO

• defaults write TeXShop DisplayAsBook YES

8


